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Abstract

Every surface that is intrinsically polyhedral can be represented by a portalgon: a collection
of polygons in the Euclidean plane with some pairs of equally long edges abstractly identified.
While this representation is arguably simpler than meshes (flat polygons in R3 forming a surface),
it has unbounded happiness: a shortest path in the surface may visit the same polygon arbitrarily
many times. This pathological behavior is an obstacle towards efficient algorithms. On the other
hand, Löffler, Ophelders, Staals, and Silveira [SoCG 2023] recently proved that the (intrinsic)
Delaunay triangulations have happiness O(1).

In this paper, given a closed polyhedral surface S, represented by a triangular portalgon, we
provide an efficient algorithm to compute the Delaunay triangulation D of S, where the vertices
of D are the singularities of S (the points whose surrounding angle is distinct from 2π). The
time complexity of our algorithm is polynomial in the combinatorial size and in the logarithm
of the aspect ratio r of the input triangular portalgon (in the real RAM model). We show that
the dependency in log r is unavoidable. Our algorithm can be used to pre-process a triangular
portalgon before computing shortest paths on its surface, and to determine whether the surfaces
of two triangular portalgons are isometric.

1 Introduction

In one of its simplest forms a triangulation is a finite collection of disjoint triangles in the Euclidean
plane, together with a partial matching of the sides of the triangles such that any two matched
sides have the same length (Figure 1). This very simple data structure appears under different
names in the literature (intrinsic triangulation [25, 26], portalgon [20]). Cutting out the triangles
from the plane and identifying the matched sides isometrically, respecting the orientations of the
triangles, provides a (compact, orientable) polyhedral surface. This surface is closed if, in addition,
it is connected and without boundary.

In this paper we consider the Delaunay triangulation of a closed polyhedral surface whose vertices
are the singularities (the points surrounded by an angle distinct from 2π) of the surface (except
for flat tori) 1. It is generically unique. Our main contribution is an algorithm to compute it from
any triangulation of the surface, whose time complexity is polynomial in the number of triangles
and in the logarithm of the aspect ratio of the input triangulation. Our second contribution is a
lower bound showing that the dependency in the logarithm of the aspect ratio is unavoidable in our
model of computation.

∗LIGM, CNRS, Univ Gustave Eiffel, F-77454 Marne-la-Vallée, France.
1As a side note, given a finite non-empty set V of points of the surface, assuming that V contains all the singularities

of the surface, our algorithms can easily be adapted to compute a Delaunay triangulation of the surface whose vertex
set is V . But this is incidental to us so we do not provide the details.
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The computed triangulation is a canonical representative of its surface, so our algorithm can be
used to determine whether the surfaces of two triangulations are isometric. Our algorithm can also
be used to pre-process a triangulation before computing shortest paths on its surface, answering a
problem posed almost 20 years ago in a popular blog post by Erickson [10], and again more recently
by other authors [20].

Before describing our contribution and its applications in more detail, we discuss related works.

1.1 Related works

Polyhedral surfaces can also be obtained from meshes, flat triangles in R3 glued along their edges.
Moreover, every mesh defines a triangulation of its surface. Yet triangulations are more general than
meshes: most triangulations cannot be obtained from a mesh. There is a recent development of
algorithms that advantageously operate on triangulations of polyhedral surfaces without reference to
a mesh. In this context the adjective “intrinsic” is sometimes placed before the name “triangulation”
to make the distinction with the particular triangulations arising from a mesh. For example Sharp
and Crane [24] find geodesics of a polyhedral surface by flipping edges of an intrinsic triangulation.
Takayama [28] constructs a low distortion homeomorphism between two surfaces, and represents
the homeomorphism by a correspondence between intrinsic triangulations. Also Liu et al. [17] re-
triangulate a surface to solve equations on it. Considering intrinsic triangulations gives them freedom
to re-triangulate the surface without modifying it, an advantage over many mesh simplification
techniques that commonly modify the surface [14].

Triangulations are so general that not all of them are suitable for computation, compared to
meshes. Prominently, a fundamental problem on polyhedral surfaces is to compute the distance
between two points, or even to report a shortest path between the two points. On the surface
of a mesh, shortest paths can be computed in time polynomial in the number of triangles. For
example, Mitchell, Mount, and Papadimitriou [22] describe an algorithm that, roughly, propagates
waves along the surface, starting from the source, in a discrete manner. Their result has since been
improved by Chen and Han [5], with a different technique. On a generic triangulation however (not
arising from a mesh), the number of times a shortest path visits a triangle is not bounded by any
function of the number of triangles. This folklore fact was noted, for example, almost 20 years ago
by Erickson [10]. Recently, Löffler, Ophelders, Staals, and Silveira [20, Section 3] coined the term
happiness of a triangulation, for the maximum number of times a shortest path visits a triangle.
They adapted the single-source shortest paths algorithm of Mitchell, Mount, and Papadimitriou [22]
from meshes to triangulations [20, Section 3], whose running time now depends on the happiness of
the triangulation. We emphasize that their algorithm is more efficient on the triangulations of low
happiness.

This raises the problem of replacing any given triangulation by another triangulation of the same
surface whose happiness is “low”. Löffler, Ophelders, Staals, and Silveira [20, Section 5] provided a
solution to this problem, but only for a restricted class of inputs whose surfaces are all homeomorphic
to an annulus. Importantly, they also proved [20, Section 4.2] that Delaunay triangulations have
bounded happiness.

Delaunay triangulations are classical objects of computational geometry [6, 13, 2], closely related
to shortest paths. While mostly known in the plane, they generalize to closed polyhedral surfaces,
see for example the depiction of Bobenko and Springborn [4]. To compute Delaunay triangulations
on these general surfaces there are, to our knowledge, only two approaches. One approach computes
a Voronoi diagram with a suitably adapted multiple-source shortest path algorithm, and then derives
from it a Delaunay tessellation, see for example Mount [23], Liu, Chen, and Tang [18], and Liu, Xu,
Fan, and He [19]. Another approach starts from an initial triangulation and flips its edges until it
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reaches a Delaunay triangulation [4]. The termination of this algorithm was proved by Indermitte,
Liebling, Troyanov, and Clémençon [15]. Note that, on surfaces, the number of flips is not bounded
by any function of the number of vertices, in stark contrast with the plane setting.

1.2 Our results

In order to state our results precisely, it now matters to make the distinction between a triangulation
and the data structure representing it, and to allow for more general polygons than triangles.
Following Löffler, Ophelders, Staals, and Silveira [20], we call portalgon the collection T of polygons
in the Euclidean plane and the partial matching of their sides. We denote by S(T ) the associated
polyhedral surface. We say that the portalgon T is triangular if all polygons are triangles. The
sides of the polygons, once identified, correspond to graph T 1 embedded on S(T ): it is this graph
T 1 that we call triangulation if T is triangular, and we call T 1 a tessellation in general.

We consider, on a closed polyhedral surface S, the unique Delaunay tessellation D of S whose
vertices are exactly the singularities of S, with a single very special exception: if S has no singularity,
then S is a flat torus and we let D be any of the Delaunay tessellations of S that have exactly one
vertex, for one can be mapped to the other via an orientation-preserving isometry of S anyway.
In any case, we say that D is the Delaunay tessellation of S, in a slight abuse. Note that D
is “generically” a triangulation, but not always. If not, then triangulating the faces of D along
vertex-to-vertex arcs provides a Delaunay triangulation.

The aspect ratio of a triangular portalgon T is the maximum side length of a triangle of T
divided by the smallest height of a triangle of T (possibly another triangle). Our main contribution
is:

Theorem 1. Let T be a portalgon of n triangles, of aspect ratio r, whose surface S(T ) is closed.
One can compute the portalgon of the Delaunay tessellation of S(T ) in O(n3 log2(n) · log4(r)) time.

In Theorem 1, the aspect ratio of T is a natural parameter that can be read off the triangles of
T . On the other hand, there is no known algorithm to compute the happiness of T . Also, if the
surface S(T ) is connected, the algorithm of Theorem 1 remains polynomial in n and log(r) when r
is the local aspect ratio of T : the maximum, over the triangles ∆ of T , of the maximum side length
of ∆ divided by the smallest height of the same triangle ∆. Indeed the aspect ratio and the local
aspect ratio are related by the following, whose easy proof is postponed to Appendix A:

Lemma 1. Let T be a portalgon of n triangles, of local aspect ratio r, and of aspect ratio r′. If the
surface S(T ) is connected then r ≤ r′ ≤ rn.

We will not use Lemma 1 ever again. As already mentioned, the only two methods we are aware
of for computing a Delaunay tessellation from an arbitrary triangulation are the flip algorithm and
the computation of the dual Voronoi diagram. The time complexities of these algorithms are not
bounded by any polynomial in n and log(r), contrarily to the algorithm of Theorem 1.

We analyze our algorithms within the real RAM model of computation, as described by Erickson,
van der Hoog, and Miltzow [12]. On such a machine, we represent each polygon of a portalgon by
the list of its vertices, and each vertex is by its two coordinates stored in the memory array dedicated
to reals. Within this model of computation, our second contribution is a lower bound that backs
our main result, Theorem 1, by showing that the polynomial dependency in the logarithm of the
aspect ratio is unavoidable (Theorem 2 in Section 9).
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1.3 Applications of Theorem 1

Theorem 1 has two interesting applications. First, recall that Delaunay triangulations have bounded
happiness [20, Section 4]. Combined with Theorem 1 we obtain the following, whose easy proof is
postponed to Appendix A:

Corollary 1. Let T be a portalgon of n triangles, of aspect ratio r, whose surface S(T ) is closed.
One can compute in O(n3 log2(n) · log4(r)) time a portalgon T ′ of O(n) triangles, whose surface is
S(T ), and whose happiness is O(1).

On the portalgon T ′ returned by Corollary 1 the single-source shortest path algorithm of Löffler,
Ophelders, Silveira, and Staals [20, Section 3] would run in time O(n2 logO(1)(n)), so that:

Observation 1. On the portalgon T ′, one can compute a shortest path between two given points in
time O(n2 logO(1)(n)).

Second, Theorem 1 enables us to test whether the surfaces of two given portalgons are isometric,
simply by computing and comparing the portalgons of the associated Delaunay tessellations (see
Appendix A):

Corollary 2. Let T and T ′ be portalgons of less than n triangles, whose aspect ratios are smaller
than r, and whose surfaces S(T ) and S(T ′) are closed. One can determine whether S(T ) and S(T ′)
are isometric in O(n3 log2(n) · log4(r)) time.

1.4 Overview and techniques for the proof of Theorem 1

We provide preliminaries in Section 2, and we give our lower bound in Section 9. The rest of the
paper is dedicated to the proof of Theorem 1, of which we now provide an overview.

We introduce a slight variation of happiness, more suitable to our needs, which we call segment-
happiness. To prove Theorem 1, the crux of the matter is to replace the input triangular portalgon
by another triangular portalgon of the same surface, whose segment-happiness is “low”.

For this purpose, our approach is to focus on portalgons T whose surface S(T ) is flat : the interior
of S(T ) has no singularity. Note that here we allow S(T ) to have boundary, and this boundary may
have singularities. The systole of S(T ) is the smallest length of a non-contractible geodesic closed
curve in S(T ). Our key technical result is:

Proposition 1. Let T be a portalgon of n triangles, whose sides are all smaller than L > 0.
Assume that S(T ) is flat. Let s > 0 be smaller than the systole of S(T ). One can compute in
O(n log2(n) · log2(2 + L/s)) time a portalgon of O(n · log(2 + L/s)) triangles, whose surface is
isometric to that of T , and whose segment-happiness is O(log(n) · log2(2 + L/s)).

Note that in Proposition 1 it is possible that L < s, which is why we write log(2+L/s) instead of
log(L/s). Sections 3–7 are devoted to the proof of Proposition 1. In Section 3 we focus on particular
portalgons, whose surfaces are all homeomorphic to an annulus; the definitions and results of this
section are used by the algorithm of Proposition 1. In Section 4 we describe the algorithm for
Proposition 1. It is a finely tuned combination of elementary operations such as inserting and
deleting edges and vertices in graphs. While the algorithm itself is relatively simple, its analysis
is more involved, and occupies Sections 5–7. In Section 5 we provide a combinatorial analysis. In
Section 6 we prepare for the geometric analysis. For that we introduce a new parameter on the
simple geodesic paths e of a flat surface, the enclosure, possibly of independent interest. Informally,
e is enclosed when a short non-contractible loop can be attached to a point of e not too close to
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the endpoints of e. In Section 7 we finally use enclosure to analyze the algorithm from a geometric
point of view, proving Proposition 1.

In Section 8 we extend Proposition 1 from flat surfaces to surfaces having singularities in their
interior, essentially by cutting out caps around these singularities. Also, in order to get a cleaner
result, we replace 2+L/s by the aspect ratio of T , and we replace segment-happiness by happiness.
We obtain:

Proposition 2. Let T be a portalgon of n triangles, of aspect ratio r. One can compute in
O(n log2(n) · log2(r)) time a portalgon of O(n · log(r)) triangles, whose surface is S(T ), and whose
happiness is O(n log(n) · log2(r)).

We have not discussed Delaunay tessellations yet. Still, we are almost ready to prove The-
orem 1. Indeed, once we have a portalgon of low happiness, we can compute shortest paths on
the surface. And, as already mentioned, shortest path algorithms classically extend to construct
Voronoi diagrams and then Delaunay tessellations. Formally:

Proposition 3. Let T be a portalgon of n triangles, of happiness h, whose surface S(T ) is closed.
One can compute the portalgon of the Delaunay tessellation of S(T ) in O(n2h log(nh)) time.

We could not find a statement equivalent to Proposition 3 in the literature, so we provide a
proof in Appendix D for completeness. We insist that the proof of Proposition 3 is incidental to
us, and Proposition 3 is not surprising at all. Our contribution is really the proof of Proposition 2.
Theorem 1 is immediate from Proposition 2 and Proposition 3:

Proof of Theorem 1. Proposition 2 computes in O(n log2(n) · log2(r)) time a portalgon T ′ of O(n ·
log(r)) triangles, whose surface is that of T , and whose happiness is O(n log(n) · log2(r)). Proposi-
tion 3 then computes the portalgon of the Delaunay tessellation from T ′ in O(n3 log2(n) · log4(r))
time.

2 Preliminaries

We use without review standard notions of graph theory, low dimensional topology, and Riemannian
geometry, referring to textbooks for details [7, 1, 27, 8]. We only mention that on a surface S, a
path p : [0, 1] → S is simple if its restriction to the interval (0, 1) is injective, in which case the
image of (0, 1) by p is the relative interior of p. We denote by ℓ(p) the length of a geodesic path
p. Throughout the paper, logarithms are in base two.

The definition of Delaunay tessellation given by Bobenko and Springborn [4, Section 2] is not
used in the core of the paper, but only in in Appendix D for proving Proposition 3. We collect
details on this definition in Appendix C for completeness.

2.1 Portalgons, tessellations, and polyhedral surfaces

A portalgon T is a disjoint collection of oriented (simple) polygons in the Euclidean plane, together
with a partial matching of the sides of the polygons such that any two matched sides have the same
length. It is triangular if all polygons are triangles. See Figure 1. Any subset of the polygons defines
a sub-portalgon T ′ of T : two sides of polygons are matched in T ′ if and only if they are matched in
T . In a portalgon T , identifying the matched sides, isometrically, and respecting the orientations of
the polygons, provides the surface of T , denoted S(T ); it is a 2-dimensional Riemannian manifold
whose metric may have singularities. The sides of the polygons of T correspond to a graph T 1

embedded on S(T ), the 1-skeleton of T .
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A polyhedral surface is any Riemannian manifold S (possibly with singularities) isometric to
the surface of a portalgon. And when we say that a portalgon T is a portalgon of S, we implicitly
fix an isometry between S(T ) and S. A tessellation of S is any 1-skeleton of a portalgon of S, it
is a triangulation if the portalgon is triangular.

Figure 1: (Left) A triangular portalgon T : two triangles in the Euclidean plane, with two sides
matched in red. (Right) The surface S(T ), and the 1-skeleton T 1.

Figure 2: (Left) The surface S(T ) of a portalgon T , on which is represented the 1-skeleton T 1 of
T . The vertex of T 1 in the interior of S(T ), represented by a black disk, is a singularity of S(T ).
(Middle) The vertex is a flat point. (Right) The vertex is a singularity.

Let us detail the singularities that a polyhedral surface S can have. Consider a triangulation
T 1 of S, a vertex x of T 1, and the sum a of the angles of faces of T 1 around x. The point x is a
singularity if x lies in the boundary of S and a ̸= π, or if x lies in the interior of S and a ̸= 2π,
see Figure 2. Every other point of S if flat. This does not depend on any particular triangulation
of S.

A surface S is flat if its interior has no singularity (although its boundary may have singularities).
The closed flat surfaces are called flat tori. They are all homeomorphic to a torus but there are
infinitely many of them. They are obtained by identifying the opposite sides of a flat parallelogram.

2.2 Aspect ratio, systole, happiness, and segment-happiness

The aspect ratio of a triangular portalgon T is the maximum side length of a triangle of T divided
by the smallest height of a triangle of T (possibly another triangle). Note that the aspect ratio is
always greater than or equal to

√
3/2 > 1, since the maximum side length of a triangle is always

greater than or equal to
√
3/2 times its smallest height.

The systole of a polyhedral surface S is the smallest length of a non-contractible geodesic closed
curve in S, except in the particular case where every closed curve in S is contractible, in which case
the systole is ∞. The important thing is that for every positive real s smaller than the systole of
S, any non-contractible closed curve in S is longer than s.
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The happiness of a portalgon T is the maximum number of times a shortest path in S(T ) visits
the image of a polygon of T , maximized over all the shortest paths of S(T ) and all the polygons of T
(see [20, Section 3]). We introduce a variation, more suitable to our needs. In a polyhedral surface
S, a segment is a simple geodesic path e whose relative interior is disjoint from any singularity
of S. The segment-happiness of e in S, denoted hS(e), is the maximum number of intersections
between e and a shortest path of S, maximized over all the shortest paths of S. The segment-
happiness of a portalgon T is then the maximum segment-happiness hS(T )(e), maximized over
the edges e of its 1-skeleton T 1. A priori, the segment-happiness of a portalgon T differs from the
happiness of T . Indeed a path in S(T ) may visit many times a face of T 1 without intersecting
any edge of T 1 more than once, if the face has high degree. However, if T is triangular, then the
happiness and the segment-happiness of T do not differ by more than a constant factor.

2.3 Representing portalgons on a real RAM

We obtain our results within the real RAM model of computation described by Erickson, van der
Hoog, and Miltzow [12]. It is an extension of the standard integer word RAM, with an additional
memory array storing reals, and with additional instructions. The available instructions are de-
scribed in [12, Table 1]. The arithmetic operations that can be performed by the machine on real
numbers are addition, subtraction, multiplication, division, and square root.

When representing a portalgon T on a real RAM, we describe each polygon of T is by the list
of its vertices, and each vertex is by its two coordinates, stored in the memory array dedicated to
reals. So displacing the polygons in the plane provides different representations of T .

When modifying a portalgon T , we actually modify our representation of T , using elementary
operations that are easily seen to achievable by a real RAM. For example, consider, in the Euclidean
plane, two triangles ∆ and ∆′, given by the coordinates of their vertices. Assuming that ∆ and ∆′

have respective sides s and s′ of the same length, we consider the operation of displacing ∆ in the
plane so that afterward ∆ and ∆′ are side by side along s = s′, and we compute the coordinates of
the vertices of ∆ after the displacement. This operation can be achieved by a real RAM 2.

That being said, the distinction between a portalgon and its representations will only matter
when proving our lower bound in Section 9. In the rest of the paper we will only use the term
portalgon, not representation, and it will be implicit that by “computing” a portalgon T , we mean
computing any representation of T .

3 Tubes and bifaces

In this section we focus on particular triangular portalgons. This is similar to but different from [20,
Section 5]. See Figure 3. First we provide a few definitions.

A tube is a triangular portalgon X whose surface S(X) is homeomorphic to an annulus and
has no singularity in its interior, and whose 1-skeleton X1 has exactly one vertex on each boundary
component of S(X).

Among tubes, a biface is a portalgon B of two triangles whose respective sides s0, s1, s2 and
s′0, s

′
1, s

′
2, in order (clockwise say, but counter-clockwise would do to), are such that s0 is matched

with s′0 and s1 is matched with s′1. Its 1-skeleton B1 has four edges: two loop edges forming the
two boundary components of S(B), which we call boundary edges, and two edges whose relative
interiors are included in the interior of S(B), which we call interior edges.

2In fact, this can be done without even using the square root operation. To see that, think of the two initial
vertices s0 and s1 of s as complex numbers, same for the corresponding vertices s′0 and s′1 of s′. The displacement of
∆ is then described by the map z → (z − s0) · (s′1 − s′0)/(s1 − s0) + s′0.
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We say that a biface B is good if the two interior edges e and f of B1 satisfy both of the
following up to possibly exchanging e and f . First, e is a shortest path in S(B). Second, cut S(B)
along e, and consider the resulting quadrilateral. If this quadrilateral has two diagonals then f is
smallest among the two diagonals: replacing f by the other diagonal would not shorten f . We will
distinguish good bifaces. A good biface B is thin if every interior edge of B1 is longer than every
boundary edge of B1. Otherwise B is thick.

Figure 3: (From left to right) A good biface, a biface that is not good, a thin biface, a thick biface.

While tubes and bifaces have unbounded happiness and segment-happiness, good bifaces on the
other hand are designed to satisfy the following:

Lemma 2. Given a good biface B, let e be an interior edge of B1. Then hS(B)(e) ≤ 6.

In Lemma 2, the number 6 is irrelevant to us, any constant would do.

Proof. Among the two interior edges of B1, let f be a shortest one. Let g ̸= f be the other interior
edge of B1. Let p be a shortest path in S(B). The relative interior p̊ of p cannot intersect the
relative interior of f twice for those intersections would be crossings and p and f are both shortest
paths since B is good. So p̊ intersects f less than four times. Then p̊ cannot intersect the relative
interior of g five times, for those intersections would be crossings, and p̊ would intersect f in-between
any two consecutive crossings with the relative interior of g. Altogether p intersects f and g at most
six times each.

We will use the elementary operation of replacing a tube by a good biface:

Proposition 4. Let X be a tube with n triangles, whose sides are smaller than L > 0. Let s > 0
be smaller than the systole of S(X). One can compute a good biface whose surface is S(X) in
O(n log n · log(2 + L/s)) time.

Proposition 4 is similar to a result of Löffler, Ophelders, Silveira, and Staals [20, Theorem 45]
(building upon a ray shooting algorithm of Erickson and Nayyeri [11]), so the proof is deferred to
Appendix B.

4 Algorithm

In this section we describe the algorithm for Proposition 1. We first describe the elementary opera-
tions and the data structure, before giving the algorithm itself. Along the way, we provide informal
explanations of our choices, we do not prove anything yet.
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4.1 Inserting vertices and edges

Informally, our goal is to improve the geometry of a triangular portalgon T , and the issue is that
the edges of T 1 that lie in the interior of S(T ) can be arbitrarily long. A naive way of shortening
an edge is to cut the edge in two at its middle point. Formally:

InsertVertices: Given a triangular portalgon T , consider every edge e of T 1 that lies in the
interior of S(T ), and insert the middle point of e as a vertex in T 1.

To perform InsertVertices, recall that T is given as a disjoint collection of triangles in the
plane, together with a partial matching of their sides: we consider every triangle P of T , and every
side s of P that is matched in T , and we make the middle point of s a new vertex of P .

The problem is that applying InsertVertices to a triangular portalgon T produces a portalgon
T ′ whose polygons are usually not triangles (they have more than three vertices). We now consider
transforming T ′ into a triangular portalgon. To do that we repeatedly cut the polygons of T ′. We
need a definition.

In the plane consider a polygon P , two distinct vertices u and v of P , and the geodesic segment
a between u and v. If the relative interior of a is included in the interior of P then a is called a
vertex-to-vertex arc of P . It is easily seen that if P has at least four vertices (is not a triangle) then
P admits at least one vertex-to-vertex arc. Among the vertex-to-vertex arcs of P , the shortest ones
are the shortcuts of P . We emphasize that we consider the shortest ones among all the vertex-
to-vertex arcs, without fixing the endpoints, but the endpoints are chosen among the vertices of P .
For example the shortcuts of a square are its two diagonals, but every other kite (a quadrilateral
in which there are two incident sides of the same length) has only one shortcut. In a portalgon
T every polygon P corresponds to a face F of T 1, and every shortcut of P corresponds to a path
whose relative interior is included in F : we say of this path that it is a shortcut of F .

InsertEdges: Given a portalgon T , as long as there is a face of T 1 that is not a triangle,
insert a shortcut of this face as an edge in T 1.

We perform InsertEdges as follows: as long as there is a polygon P of T that is not a triangle,
we cut P into two polygons along a shortcut. This creates two new polygon sides, which we match
in T .

We shall apply InsertVertices followed by InsertEdges to a triangular portalgon T in order
to produce another triangular portalgon T ′, hopefully with a nicer geometry. The problem is now
that T ′1 has more vertices than T 1. All the other operations of the algorithm are devoted to keeping
the number of vertices low.

4.2 Deleting vertices

From now on it is important that every surface considered is flat, there is no singularity in its interior.
Given a triangular portalgon T , assuming that the surface S(T ) is flat, we consider decreasing the
number of vertices of T 1. To do that we naturally consider deleting some vertices. Not all vertices
can be deleted. For example a vertex incident to a loop edge cannot be deleted. Also we will not
delete vertices that lie on the boundary of the surface S(T ). A vertex of T 1 is weak if it lies in the
interior of S(T ) and is not incident to any loop edge in T 1. It is strong otherwise.

DeleteVertices: Given a triangular portalgon T whose surface S(T ) is flat, construct a
maximal independent set V of weak vertices of T 1 that have degree smaller than or equal to six.
For every vertex v ∈ V delete v and its incident edges from T 1.
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We perform DeleteVertices as follows. To delete a vertex v of T 1, we consider the vertices
of the triangles of T that correspond to v. No two of them belong to the same triangle for otherwise
there would be a loop of T 1 based at v, contradicting the assumption that v is weak. We move their
triangles in the plane so that these vertices are now placed at the same point of the plane, and so
that the triangles are placed in the correct cyclic order around this point, without overlapping. This
is possible since v lies in the interior of S(T ), and since we assumed that every point in the interior
of S(T ) is flat: it is surrounded by an angle of 2π. Now the union of the triangles is a polygon. In
T , we replace all the triangles by this single polygon.

Afterward the polygons of T are usually not triangles anymore, but this will be solved by
applying InsertEdges after each application of DeleteVertices.

Observe that in DeleteVertices we delete only vertices of degree smaller than or equal to
six. Informally, the reason is that deleting a weak vertex of degree d ≥ 3 creates a face of degree
d around it. We then insert d − 3 edges in this face when applying InsertEdges. The problem
is that only a constant number of edges can be inserted in each face without risking to destroy
our improvements on the geometry of the tessellation. This is why we make sure that d = O(1)
beforehand. The exact bound on d is not really important (although changing it would change some
constants of the algorithm), but it must be at least six so that we can still remove a fraction of
the excess vertices this way, at least when most of them are strong. We will see that in due time.
Similar ideas can be found in the literature, see for example Kirkpatrick [16, Lemma 3.2].

4.3 Simplifying tubes

The operation DeleteVertices cannot delete strong vertices, and among them the vertices that
lie the interior of the surface and are incident to a loop edge. In this section we describe an operation
for deleting such vertices.

In order to grasp the intuition, observe, informally, that it is possible that almost all the vertices
of T 1 lie in the interior of S(T ) and are incident to a loop edge. Fortunately, we will see that in this
case there must be a sub-portalgon X of T such that X is a tube and such that the interior of S(X)
contains loop edges of X1. The solution is to delete those loop edges by replacing X by a good
biface with Proposition 4. There is one subtlety though: we must choose the tube X carefully, so
that we replace any concatenation of tubes by a single biface whenever possible, in order to delete
the loops in-between the tubes, instead of replacing each one of the tubes individually. Taking that
into consideration leads to the following:

SimplifyTubes: In a triangular portalgon T whose surface S(T ) is flat, do the following:

1. In T 1 build a set J of loop edges that lie in the interior of S(T ) and are pairwise disjoint,
as follows. There are two cases:

(a) If S(T ) is homeomorphic to a torus, do the following. Let J contain two disjoint loop
edges of T 1 if there exist two such edges, otherwise let J = ∅.

(b) Otherwise, if S(T ) is not homeomorphic to a torus, do the following. First construct a
set J ′ of loop edges by considering every vertex v of T 1 that lies in the interior of S(T )
and is incident to a loop edge, and by putting one (and only one!) of the loop edges
incident to v in J ′. Then build a subset J ⊆ J ′ by removing from J ′ every e ∈ J ′

that satisfies each of the following. First, cutting S(T ) along the loops in J ′, and
considering the resulting connected components, two such components are adjacent
to e (instead of only one). Second, letting S0 and S1 be those two components, and
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Figure 4: (Top) Data structure for Algorithm: a portalgon R whose polygons are partitioned,
here by color, inducing sub-portalgons of R called regions, and one region singularized as being
active, here in red. (Bottom) The surface S(T ) is here homeomorphic to an annulus.

considering the two sub-portalgons of T whose surfaces are S0 and S1, each of these
two portalgons is a tube.

2. Cut the surface S(T ) along the loops in J , and consider the resulting connected components.
Each such component is the surface of a sub-portalgon X of T . If X is a tube replace X
by a good biface B.

The idea behind step 1b is to remove loops from J ′ so that step 2 replaces a concatenation of
tubes by a single good biface when possible, instead of replacing the tubes individually.

4.4 Data structure for marking bifaces as inactive

We are almost ready to give the algorithm, but there is still one important thing to understand. For
geometric reasons that we will detail in Section 7, in step 2 of SimplifyTubes, if the good biface
B is thin we will not just replace X by B, but we will also make sure to not modify B ever again.
In this sense B becomes inactive. Doing so requires a data structure remembering which parts of
the portalgon are inactive, which we now describe.

See Figure 4. The data structure maintains a portalgon R together with a partition of the
polygons of R. Each set X of polygons in the partition defines a sub-portalgon of R that we call
region. One region is singularized as the active region RA. The other regions are inactive. Note
that the surface of the active region may be disconnected, and that the surfaces of distinct inactive
regions may be adjacent.

Let us now describe what the algorithm will do to the data structure. The data structure
will be initialized by setting RA = R, without inactive region. Then the algorithm will use the
data structure like the reader imagines: it will apply the routines InsertVertices, InsertEdges,
DeleteVertices, and SimplifyTubes to the active region RA, and mark as inactive every thin
biface encountered in step 2 of SimplifyTubes. Observe that S(RA), the surface of RA, will
diminish over time as more and more regions are marked inactive. This may increase the topological
complexity of S(RA) (the numbers of connected components and boundary components), ruining
our efforts to keep the combinatorial complexity of RA bounded. To counteract this, we introduce
a small gardening routine:
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Gardening: Consider every connected component of S(RA). Each such component is the
surface of a sub-portalgon X of RA. If X is a tube replace X by a good biface B, and mark B
as inactive.

We emphasize that in Gardening the good biface B is always marked as inactive, even if B is
thick.

We described everything that the algorithm can do to the data structure. This immediately
implies three invariants maintained by the algorithm, that we give now in order to help the under-
standing. The first two invariants are:

• Every polygon of the active region has degree at most six.

• Every inactive region is a good biface.

For the last invariant we need a definition. Recall that in R if two sides s and s′ of polygons
are matched then s and s′ correspond to an edge e of R1. If moreover s and s′ belong to different
polygons, and if their respective polygons belong to different regions, we say that e is separating.
Then e is a loop, for it is a boundary edge of a biface by the second invariant above, and e belongs
to the interior of S(R). The third invariant maintained by the algorithm is:

• The separating loops are pairwise disjoint. Equivalently, no two of them are based at the same
vertex of R1.

4.5 Algorithm

Finally, we give the algorithm. The algorithm consists in repeatedly applying two parts. In a first
part, we improve the geometry by applying InsertVertices and then InsertEdges. However this
increases the number of vertices. So in a second part we apply SimplifyTubes, DeleteVertices,
and InsertEdges, in combination with Gardening. The problem is that this second part can
only remove a fraction of the vertices at once, so it needs to be repeated several times in order to
counteract the increase of vertices in the first part. It turns out that 350 repetitions suffice, as we
shall see.

Algorithm: Given a triangular portalgon T whose surface S(T ) is flat, and a positive integer
N , do the following. Initialize the data structure by letting R be the input portalgon T , and the
active region RA be R itself, without inactive region. Then repeat N times the following:

• Apply InsertVertices to RA. Then apply InsertEdges to RA.

• Repeat 350 times the following:

• Apply Gardening.

• Apply SimplifyTubes to RA but in step 2 whenever the good biface B is thin mark
B as inactive.

• Apply Gardening.

• Apply DeleteVertices to RA. Then apply InsertEdges to RA.

In the end return R.

Note that perhaps the algorithm would work too if it applied Gardening only once, but
applying Gardening twice will simplify our analysis. When proving Proposition 1, we will apply
the algorithm with N = ⌈log(2 + L/s)⌉, but we will see that in due time.
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5 Combinatorial analysis of the algorithm: proof of Proposition 5

In this section we provide the combinatorial analysis of Algorithm, by proving the following:

Proposition 5. Apply Algorithm to a portalgon T of n triangles, whose surface S(T ) is flat.
During the execution the number of polygons of the active region RA is O(n).

We analyze each operation independently before proving Proposition 5. Our analysis is on the
number vertices of R1

A, not the number of polygons of RA, but bounding one immediately bounds
the other, as we shall see, and we find more convenient to argue on the vertices of R1

A.

5.1 Analysis of InsertVertices

We start by bounding the increase in vertices of InsertVertices:

Lemma 3. Let T be a triangular portalgon. Let g be the genus of S(T ). Let m be the number of
vertices of T 1. Apply InsertVertices to T and consider the resulting portalgon T ′. Then T ′1 has
less than 7(g +m) vertices.

Lemma 3 relies on the following classical consequence of Euler’s formula:

Lemma 4. There are less than 6(g +m) edges in T 1.

Proof. Let m1 and m2 count respectively the edges and the faces of T 1, and let b count the boundary
components of S(T ). Double counting gives 3m2 ≤ 2m1. Euler’s formula gives m1 −m2 = m +
2g + b− 2. And we have b ≤ m. Therefore m1 ≤ 3m1 − 3m2 < 6(m+ g).

Proof of Lemma 3. There are no more vertices inserted than there are edges in T 1, and there are
less than 6(g +m) edges in T 1 by Lemma 4.

5.2 Analysis of DeleteVertices

For DeleteVertices to remove a fraction of the vertices, it suffices that the number of vertices
vastly exceeds the topology of the surface, and that almost all of the vertices are weak:

Lemma 5. Let T be triangular portalgon whose surface S(T ) is flat. Let m be the number of
vertices of T 1. Let g be the genus of S(T ), and let m̄ be the number of strong vertices of T 1. Apply
DeleteVertices to T and consider the resulting portalgon T ′. If m > 24(g+ m̄) then T ′1 has less
than 167m/168 vertices.

Lemma 5 relies on the following classical consequence of Euler’s formula:

Lemma 6. Let S a topological surface of genus g with b boundary components. Let Y be a topological
triangulation of S with m vertices. If m > 24(g + b) then at least m/12 vertices of Y have degree
smaller than or equal to 6.

Proof. Let m1 and m2 count respectively the edges and the faces of Y . Euler’s formula gives
6m−6m1+6m2 = 12−12g−6b. Double counting gives 3m2 ≤ 2m1−b and 2m1 =

∑
v deg v, where

the sum is over the vertices, and where deg v denotes the degree of a vertex v. Then
∑

v 6−deg v =
6m − 2m1 ≥ 6m − 6m1 + 6m2 + 2b ≥ 12 − 12g − 4b > −m/2. Let a and b count the number
of vertices whose degree is respectively smaller than or equal to six, and greater than six. Then
b < 5a+m/2. Assuming a < m/12, we get b < 11m/12, and so a+ b < m. This is a contradiction.
This proves the lemma.
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Proof of Lemma 5. Let b be the number of boundary components of S(T ). We have m > 24(g+ b).
Indeed we assumed m > 24(g + m̄), and we have m̄ ≥ b as every boundary component of S(T )
contains a strong vertex of T 1. So by Lemma 6 at least m/12 vertices of T 1 have degree smaller than
or equal to six. Moreover less than m/24 vertices of T 1 are strong by assumption. So more than
m/24 vertices of T 1 are weak and have degree smaller than or equal to six. Any maximal independent
set of such vertices contains more than m/(24× 7) = m/168 vertices, so DeleteVertices deletes
more than m/168 vertices.

5.3 Analysis of SimplifyTubes

Right after applying SimplifyTubes the number of vertices that lie in the interior of the surface
and are incident to a loop is bounded by the topology of the surface:

Lemma 7. Let T be a triangular portalgon whose surface S(T ) is flat. Let g and b be the genus
and the number of boundary components of S(T ). Apply SimplifyTubes to T , and consider the
resulting portalgon T ′. At most 9(g + b) vertices of T ′1 lie in the interior of S(T ′) and are incident
to a loop in T ′1.

Lemma 7 relies on the following:

Lemma 8. Let I be a set of loop edges of T 1 that lie in the interior of S(T ) and are pairwise disjoint.
In I all but at most 9(g + b) loops e satisfy the following: there are two connected components of
S(T ) \ I incident to e, and each of them is the surface of a sub-portalgon of T that is a tube.

Proof. Cut S(T ) along I, and consider the resulting connected components. Those components
are the surfaces of sub-portalgons of T . Let Z contain those sub-portalgons of T . Let Z ′ ⊆ Z
contain the sub-portalgons that are not tubes. Without loss of generality I ̸= ∅. Then every T0 ∈ Z
is such that ∂S(T0) ̸= ∅ since S(T ) is connected. Let χ(T0) and d(T0) be respectively the Euler
characteristic of S(T0) and the number of boundary components of S(T ) that belong to S(T0). Let
λ(T0) = 2d(T0)− χ(T0).

We claim that every T0 ∈ Z satisfies λ(T0) ≥ 0, and that if T0 ∈ Z ′ then λ(T0) > 0. Indeed
we have χ(T0) ≤ 1 since S(T0) is not homeomorphic to a sphere. So assuming λ(T0) ≤ 0, we get
d(T0) = 0. Then χ(T0) ̸= 1 for otherwise S(T0) would be homeomorphic to a disk, would have no
curved point in its interior, and would be bounded by a single geodesic loop issued of I, contradicting
the formula of Gauss–Bonnet. So χ(T0) = 0. Then T0 is a tube since S(T0) is not homeomorphic
to a torus. This proves the claim.

Now for every T0 ∈ Z ′ let b(T0) be the number of boundary components of S(T0). The claim im-
plies b(T0) ≤ 2−χ(T0) ≤ 2+λ(T0) ≤ 3λ(T0). So

∑
T0∈Z′ b(T0) ≤ 3

∑
T0∈Z′ λ(T0) ≤ 3

∑
T0∈Z λ(T0) ≤

9(g+ b). Therefore at most 9(g+ b) loops in I are incident to the surface of some T0 ∈ Z ′. If every
other loop in I is incident to the surfaces of two distinct T0, T1 ∈ Z then we are done. Otherwise
there is a loop e ∈ I incident to the surface of only one T0 ∈ Z. Since T0 is a tube, S(T ) is a
homeomorphic to a torus, and e is the only loop in I, so we are done. This proves the lemma.

Proof of Lemma 7. We claim that in the application of SimplifyTubes the set J contains at most
9(g+ b) loops. This is true if step 1a is applied, for in this case g = 1 and J contains either zero or
two loops. And if step 1b is applied all but 9(g+b) loops in J ′ are incident to two distinct connected
component of S(T ) \ J ′ whose corresponding sub-portalgons of T are tubes, by Lemma 8. Those
loops are not retained in J . This proves the claim.

In the particular case where the surface S(T ) is homeomorphic to a torus, and where T 1 contains
exactly one vertex incident to loop a edge, the application of SimplifyTubes does nothing and
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T = T ′. In this case the lemma is proved. In all other cases if a vertex v of T ′1 lies in the interior
of S(T ′) and is incident to a loop edge in T ′1, then v is the base vertex of some loop in J . Indeed
v would otherwise have been deleted by SimplifyTubes when replacing a tube by a biface. There
are at most 9(g + b) such vertices by our claim. This proves the lemma.

5.4 Analysis of Gardening

Right after applying Gardening the topology of S(RA), the surface of the active region, is bounded
by the topology of S(R), the whole surface:

Lemma 9. Let g and b be the genus and the number of boundary components of S(R). The genus
of S(RA) is smaller than or equal to g. And right after applying Gardening S(RA) has at most
10(g + b) boundary components.

Proof. The genus of S(RA) is smaller than or equal to g. It is the number of boundary components
of S(RA) that we must handle. Each boundary component of S(RA) is either a boundary component
of S(R), and there are b of them, or it is a separating loop. We bound the the number of separating
loops adjacent to S(RA), so let I contain those loops. Each e ∈ I is incident to two connected
components of S(R) \ I: one of them is in S(RA), the other is not. The component in S(RA) is not
the surface of a tube since Gardening was just applied. So I contains at most 9(g + b) loops by
Lemma 8. We proved that S(RA) has at most 10(g + b) boundary components.

5.5 Proof of Proposition 5

Proof of Proposition 5. We will prove that the number of vertices of R1
A is O(n) throughout the

execution. This will prove the lemma for then the number of edges of R1
A is also O(n) by Lemma 4,

since the genus of S(RA) is O(n), and so the number of polygons of RA is also O(n).
Consider the input triangular portalgon T . Let m be the number of vertices of T 1. Let g and

b be the genus and the number of boundary components of S(T ). Observe that m ≤ 3n, g ≤ n,
and b ≤ n. We will argue using m, g, and b instead of n. There are two loops in the algorithm:
the main loop, which repeats N times, and the interior loop, which repeats 350 times within each
iteration of the main loop.

First we consider a single iteration of the interior loop. Let mA be the number of vertices of R1
A

at the begining of this iteration. Observe that the iteration does not insert any new vertex in R1
A.

We claim that if mA > 3000(g + b+m) then less than 167mA/168 vertices are in R1
A at the end of

the loop. To prove the claim first observe that after each application of Gardening S(RA) has at
most 10(g+b) boundary components by Lemma 9. And the genus of S(RA) is smaller than or equal
to g. Now after the application of SimplifyTubes at most 9(g+10(g+ b)) ≤ 99(g+ b) vertices of
R1

A lie in the interior of S(RA) and are incident to a loop by Lemma 7. This is still the case just
before the application of DeleteVertices. Moreover, at this point, at most m+10(g+ b) vertices
of R1

A lie on the boundary of S(RA); indeed every such vertex is either a vertex of T 1, and there
are at most m, or it is the base vertex of a separating loop, in which case it is the unique vertex
in its boundary component of S(RA), and there are at most 10(g + b). Altogether, just before the
application of DeleteVertices, the number m̄A of strong vertices of R1

A satisfies m̄A ≤ m+109(g+b).
If at this point R1

A has at most 24(g+m̄A) vertices then it already has less than 167mA/168 vertices
since we assumed mA > 3000(g + b + m). Otherwise less than 167mA/168 vertices remain after
DeleteVertices by Lemma 5. In any case the claim is proved.

Now we prove the lemma by considering a single iteration of the main loop. Assuming that R1
A

has more than 3000(g + b + m) vertices at the beginning of the iteration, we shall prove that in
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the end of the iteration the number of vertices of R1
A has decreased. To do so first observe that the

iteration starts with InsertVertices, and this is the only moment where vertices are inserted. At
this point the number of vertices of R1

A is multiplied by less than 8 by Lemma 3. And by our claim,
as long as the number of vertices exceeds 3000(g + b +m) it is divided by more 168/167 by each
iteration of the interior loop. There are 350 iterations of the interior loop, and 8 < (168/167)350.
This proves the lemma.

6 Enclosure

In this section we fix a flat surface S. We introduce a parameter on the segments of S that we
call enclosure. Then we relate enclosure to segment-happiness and length, and we show what the
elementary operations used by Algorithm do to the enclosure and the length of the edges involved,
preparing for the geometric analysis of Algorithm.

Figure 5: The red loop encloses the blue segment in the surface.

First we define enclosure. See Figure 5. Consider a segment e of S. Informally, e is “enclosed” in
S when a short non-contractible loop can be attached to a point of e not too close to the endpoints
of e. Formally, consider a point x in the relative interior of e. We denote by ⟨x⟩e the minimum
length of the two sub-segments of e separated by x. Assume that there exists a loop γ based at x
in S, such that γ is geodesic except possibly at its basepoint. Further assume that ℓ(γ) < ⟨x⟩e. In
this case γ and e are necessarily in general position: informally, they do not overlap, more formally,
every sufficiently short sub-path of γ is either disjoint from e or its intersection with e is a single
point. There are two cases: either γ crosses e at x, or γ meets x on only one side of e. If γ crosses e
at x, then we say that γ encloses e in S. Also we say that γ encloses e by a factor of ⟨x⟩e/ℓ(γ)
in S. The enclosure cS(e) ≥ 1 is the supremum of the ratios ⟨x⟩e/ℓ(γ) over all the basepoints x in
the relative interior of e, and over all the loops γ based at x that enclose e in S. It is conventionally
set to one if there is no loop enclosing e in S.

6.1 Enclosure of a sub-segment

Recall that, given an edge e of a tessellation of S, the operation InsertVertices may insert the
middle point of e as a vertex in the tessellation. The following ensures that the two resulting edges
are not “more enclosed” in S than the initial edge. It is straightforward:

Lemma 10. Let e be a segment in S, and let f be a segment included in e. Then cS(e) ≥ cS(f).
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Proof of Lemma 10. Let t > 1. Assume that there is a loop γ, based at a point x, that encloses f
by a factor of t. Then γ encloses e by a factor of t since ⟨x⟩f ≤ ⟨x⟩e.

6.2 Enclosure and length of a shortcut

Recall that, given a face F of a tessellation of S, the operation InsertEdges may insert a shortcut
of F as an edge in the tessellation. The following ensures that if the shortcut inserted is “very
enclosed” in S, then it is “not much more enclosed” in S and “not much longer” than the edges
initially in the tessellation:

Proposition 6. Let F be a face of a tessellation of S. Assume that F has a shortcut e such that
cS(e) > 6. Then F has a side f such that cS(f) ≥ cS(e)− 4 and ℓ(f) ≥ (1− 4/cS(e)) · ℓ(e).

In this section we prove Proposition 6. First we need a lemma:

Lemma 11. In S, let e and f be two segments whose relative interiors are disjoint, and let γ be a
geodesic loop. Assume that γ encloses e by a factor of t > 2, and that γ intersects f at a point y
such that ⟨y⟩f > ℓ(γ). Rebase γ at y, and let γ′ be the geodesic loop homotopic to it. Then γ′ meets
y on both sides of f .

Proof. We have ℓ(γ′) ≤ ℓ(γ) so ℓ(γ′) < ⟨y⟩f , and so γ′ is in general position with f . We prove the
lemma by contradiction, so assume that γ′ meets y only on the right side of f , for some direction of
f . In the universal covering space S̃ of S, consider a lift f̃ of f . Let ỹ be the lift of y that belongs
to f̃ . Since the interior of S̃ is flat, there is a geodesic L̃, containing f̃ , such that on both ends L̃
is either infinite or reaches the boundary of S̃. Then L̃ separates S̃ in two connected components.
The two lifts of γ′ incident to ỹ meet ỹ on the right side of f̃ by assumption, and they are otherwise
disjoint from L̃. In particular, their other endpoints lie on the right side of L̃.

We have ℓ(γ) < ⟨y⟩f so γ is in general position with f . Direct γ so that γ crosses f from right
to left at y, and write γ as the concatenation of two paths γ0 and γ1 respectively before and after its
crossing at y. There is a lift γ̃1 of γ1 that leaves ỹ on the left of f̃ . And γ̃1 is otherwise disjoint from
L̃, since the interior of S̃ is flat. Thus the endpoint x̃ of γ̃1 lies on the left of L̃. There is a lift γ̃0
of γ0 that starts at x̃. And γ̃0 is otherwise disjoint from γ̃1 since γ meets x on both sides of e, and
since the interior of S̃ is flat. By the previous paragraph, the endpoint of γ̃0 lies on the right side
of L̃, so γ̃0 intersects L̃. Cut γ̃0 at its first intersection point z̃ with L̃. Let Ĩ be the sub-segment of
L̃ between ỹ and z̃. The concatenation of the prefix of γ̃0 ending at z̃, of Ĩ, and of γ̃1 is a simple
closed curve C̃. At x̃, there is a portion of ẽ that enters the bounded side of C̃, since γ meets x on
both sides of e. This portion of ẽ can be extended into a geodesic p̃ that meets C̃ at some point ṽ,
since the interior of S̃ is flat. Then ṽ belongs to the relative interior of Ĩ. We claim that ṽ belongs
to the relative interiors of both ẽ and f̃ , which is a contradiction since the relative interiors of e and
f are disjoint. To prove the claim, first observe that the distance between ỹ and z̃ in S̃ is at most
ℓ(γ), and this distance is equal to the length of Ĩ, since the interior of S̃ is flat. So the sub-segment
of Ĩ between ỹ and ṽ is no longer than ℓ(γ) < ⟨y⟩f , and is thus included in the relative interior of
f̃ . Also, the distance between ṽ and x̃ is smaller than or equal to 2ℓ(γ) ≤ 2⟨x⟩e/t < ⟨x⟩e, so p̃ is
included in the relative interior of ẽ.

The proof of Proposition 6 also relies on the following construction. See Figure 6. In the
Euclidean plane R2 let Q be a polygon with more than three vertices. Let e be a shortcut of Q.
Let f and f ′ be sides of Q separated by e along the boundary of Q. Let x be a point in the relative
interior of e. Let y and y′ be points that lie on respectively f and f ′ (possibly vertices of Q), and
do not lie on e. Consider the segments p and p′ between x and respectively y and y′. Assume that
the relative interiors p and p′ are included in the interior of Q. Then:
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Figure 6: The setting of Lemma 12.

Lemma 12. Let t > 6. If ℓ(p) ≤ ⟨x⟩e/t and ℓ(p′) ≤ ⟨x⟩e/t, then at least one of f and f ′, say f , is
such that ⟨y⟩f ≥ (1− 4/t) · ⟨x⟩e and ℓ(f) ≥ (1− 4/t) · ℓ(e).

Proof. Assume without loss of generality that e is horizontal, that f lies above e, and that x is the
origin (0, 0) ∈ R2. Then x cuts e into two segments e0 and e1, respectively the right and left one.
Let v0 and v1 be respectively the right and left endpoints of e. Consider the following algorithm in
three phases. In the first phase consider the point z = x and move z along p. Doing so, consider the
segments from z to v0 and v1. If moving z makes the relative interior of one of those two segments
intersect ∂Q, then stop: this is a break condition. Also break if z reached y and y is a vertex of
Q. Otherwise the algorithm enters its second phase. Then y cuts f in two segments f0 and f1,
where f0 is on the right of y as seen from the path p directed from x to y. In phase two move z
along f0 or f1, choosing carefully which segment to move along so that the second coordinate of
z does not increase. We assume without loss of generality that z moves along f0, by flipping the
figure horizontally otherwise. Move along f0 by a distance of (1− 4/t)ℓ(e0), but break if z reaches
the right end-vertex of f , or if the relative interior of the segment between z and v0 intersects ∂Q.
If the algorithm did not break, it enters its third and final phase. In this phase put z back on y,
and move it along the other sub-segment of f , here f1, by a distance of (1− 4/t)ℓ(e1), breaking if z
reaches the left end-vertex of f , or if the relative interior of the segment between z and v1 intersects
∂Q.

If the algorithm did not break then ℓ(f) ≥ (1 − 4/t)ℓ(e) and ⟨y⟩f ≥ (1 − 4/t)⟨x⟩e and we are
done. Otherwise, if the algorithm broke, consider the triangle ∆ between v0, v1, and z. The break
conditions ensure that the interior of ∆ is included in the interior of Q, and that there is a vertex
w of Q that lies on ∂∆ and not on e. We claim that the inner-angles of ∆ at v0 and v1 are both
strictly smaller than π/4. We prove this claim by considering the coordinates (α, β) ∈ R× [0,+∞[
of z, and the coordinates (ℓ(e0), 0) and (−ℓ(e1), 0) of v0 and v1 respectively, and by proving that
the invariants ℓ(e0) − α > β and α + ℓ(e1) > β hold at any time during the algorithm. Let
m = min(ℓ(e0), ℓ(e1)) = ⟨x⟩e. In the first phase |α| ≤ m/t and 0 ≤ β ≤ m/t, so the invariants hold
since t > 2. In the second phase β does not increase and α does not decrease. Moreover α does
not increase by more than ℓ(e0)(1 − 4/t) so the invariants hold. If the second phase ends without
breaking then the absolute slope λ of the line supporting f is smaller than or equal to 1/(t − 5).
Indeed during the second phase β decreased by at most m/t while z moved a distance ℓ(e0)(1−4/t),
so α increased by at least ℓ(e0)(1− 4/t)−m/t, and so 1/λ ≥ ℓ(e0)(1− 4/t)t/m− 1 ≥ t− 5. In the
third phase α ≥ −m/t− ℓ(e1)(1− 4/t) and β ≤ m/t+ λℓ(e1)(1− 4/t) so α+ ℓ(e1) ≥ 3ℓ(e1)/t > β
since t > 6. Also β increases less than α decreases since λ < 1/2, so ℓ(e0) − α > β remains true.
This proves the claim.

Applying the algorithm to p′ and f ′ on the other side of e, either the algorithm does not break
in which case ℓ(f ′) ≥ (1−4/t)ℓ(e), ⟨y′⟩f ′ ≥ (1−4/t)⟨x⟩e, and we are done. Or the algorithm breaks
and we get similarly a triangle ∆′ and a vertex w′ of P . The inner angles of ∆′ at v0 and v1 are also
both strictly smaller than π/4, so the relative interior of the segment between w and w′ is included
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in the interior of the quadrilateral formed by ∆ and ∆′, and is strictly shorter than e. This segment
is a vertex-to-vertex arc of Q shorter than e, a contradiction.

Proof of Proposition 6. Let t > 6. Assume that there is a geodesic loop γ that encloses e by a factor
of t. Let x be the basepoint of γ. In the Euclidean plane, consider the polygon Q corresponding to
F . Let ê and x̂ be the pre-images of e and x in Q. Consider the prefix and the suffix of γ that leave
x on both sides of e to meet ∂F , and their pre-image paths in Q that meet two boundary edges f̂
and f̂ ′ of Q, at respective points ŷ and ŷ′. By Lemma 12, one of those two points, say ŷ without
loss of generality, is such that ⟨ŷ⟩

f̂
≥ (1 − 4/t)⟨x̂⟩ê and ℓ(f̂) ≥ (1 − 4/t)ℓ(ê). Also f̂ projects to

a boundary edge f of F , and ŷ projects to a point y in the relative interior of f . Now rebase γ
at y, and consider the geodesic loop γ′ homotopic to it (where the basepoint at y is fixed by the
homotopy). Then ℓ(γ′) ≤ ℓ(γ) = ⟨x⟩e/t < ⟨y⟩f/(t− 4). In particular ℓ(γ′) < ⟨y⟩f since t > 5. And
γ′ meets y on both sides of f by Lemma 11, since t > 2.

6.3 Interior of a thick biface

Recall that, given a portalgon R whose surface is S, Algorithm may replace a sub-portalgon of R
by a good biface B. The following ensures that if B is thick, and if an interior edge of B1 is “very
enclosed” in the surface S, then it is “not much more enclosed” in S and “not much longer” than
the edges initially in R1, similarly to Proposition 6:

Proposition 7. Assume that S contains the surface of a thick biface B, and let e be one of the
two interior edges of B1. Assume that cS(e) > 6. Then there is a boundary edge f of B1 such that
cS(f) ≥ cS(e)− 5 and ℓ(f) ≥ (1− 4/cS(e)) · ℓ(e).

In this section we prove Proposition 7. First we need a lemma:

Lemma 13. Let B be a good biface. Among the two interior edges of B1 let f be a longest one.
Let F be the face of B1 adjacent to f . Each corner of F incident to f has angle smaller than or
equal to π/2.

Proof. Among the two interior edges of B1 let e be a shortest one, and let g ̸= e be the other one.
Then e, g, and f are the sides of F . The angle at the corner of F between f and g is smaller
than π/2 since ℓ(e) ≤ ℓ(g). Now consider the corner c between f and e. Cut S(B) open along e
and consider the resulting quadrilateral Q in the plane. The edge f of B1 corresponds to a side
f̂ of Q, the edge e corresponds to two opposite sides ê and ê′, and the edge g corresponds to a
vertex-to-vertex arc ĝ of Q. Also the other boundary edge f ′ ̸= f of B1 corresponds to the side f̂ ′

of Q opposite to f̂ . And the corner c corresponds to the corner ĉ of Q between ê and f̂ . Let d̂ be
the corner of Q opposite to ĉ, between ê′ and f̂ ′. Assume by contradiction that the angle at ĉ is
greater than π/2. We have ℓ(ê) = ℓ(ê′) and ℓ(f̂) ≥ ℓ(f̂ ′) so the angle at d̂ is greater than or equal
to the angle at ĉ, and in particular is also greater than π/2. The two other angles of Q are smaller
than π, so Q is convex and admits a diagonal p ̸= ĝ. Consider the unique circle C that admits ĝ
as a diameter. Then the two endpoints of p lie in the interior of C. So p is shorter than ĝ. This
contradicts the assumption that B is good.

Proof of Proposition 7. Among the two interior edges of B1 let g be a shortest one. Among the two
boundary edges of B1 let g′ be a longest one. Then ℓ(g) ≤ ℓ(g′) since B is thick. We claim that if
cS(g) > 2, then cS(g′) ≥ cS(g)− 1. To prove the claim let t > 2 and assume that there is a loop γ
that encloses g by a factor of t in S. Let x be the basepoint of γ. Let F be the face of B1 adjacent to
g′. Around x there is a portion of γ that enters F . This portion of γ must leave F by a point y of g′
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since the angle of F between g and g′ is smaller than or equal to π/2 by Lemma 13, since ℓ(g) ≤ ℓ(g′),
and since ℓ(γ) = ⟨x⟩g/t < ⟨x⟩g/

√
2. Then ⟨y⟩g′ ≥ ⟨x⟩g−ℓ(γ) = (1−1/t)⟨x⟩g by triangular inequality

and since ℓ(g) ≤ ℓ(g′). Rebase γ at y, and consider the geodesic loop γ′ homotopic to it (where the
homotopy fixes the basepoint at y). Then ℓ(γ′) ≤ ℓ(γ) = ⟨x⟩g/t ≤ ⟨y⟩g′/(t− 1). And γ′ encloses g′

by Lemma 11, since t > 2. This proves the claim.
If e = g we are done by our claim, so assume that e is a longest interior edge of B1. Deleting

e merges the two faces of B1 into a single face F ′ of which e is a shortcut, since B is good. So
Proposition 6 applies since cS(e) > 6: there is a boundary edge f of F ′ such that cS(f) ≥ cS(e)− 4
and ℓ(f) ≥ (1 − 4/cS(e))ℓ(e). If f is a boundary edge of B1 we are done. Otherwise f = g so
ℓ(g′) ≥ ℓ(f) ≥ (1 − 4/cS(e))ℓ(e) and cS(g

′) ≥ cS(f) − 1 ≥ cS(e) − 5 by our claim since cS(e) > 6.
This proves the proposition.

6.4 Boundary of a thin biface

Recall that Algorithm keeps some thin bifaces in the output portalgon by marking them as
inactive. The following shows that their boundary edges are “not very enclosed” in S, which is not
surprising:

Proposition 8. Assume that S contains the surface of a thin biface B, and let e be one of the two
boundary edges of B1. Then cS(e) ≤ 2.

In this section we prove Proposition 8. First we need two lemmas:

Lemma 14. Let B be a thin biface. Among the two interior edges of B1 let e be a shortest one.
Each of the four corners between e and the boundary of S(B) has angle greater than π/4.

Proof. Assume by contradiction that there is a corner c between e and a boundary edge f of B1

whose angle is smaller than or equal to π/4. Cut S(B) open along e and embed the resulting
quadrilateral Q in the plane, isometrically. The edge e corresponds to two opposite sides ê and ê′

of Q. The edge f corresponds to one of the other two sides of Q, that we call f̂ . The vertex v of
the corner c corresponds to the two end-vertices of f̂ : let v̂ be the one incident to ê, and let v̂′ be
the one incident to ê′. Without loss of generality the corner c corresponds to the corner of Q at
v̂, whose angle is thus smaller than or equal to π/4. Consider the orthogonal projection x of v̂′ on
the line containing ê. Then x belongs to ê since ê is longer than f̂ , as B is thin. The segment p
between x and v̂′ is shorter than the portion of ê between x and v̂. Also p is included in Q since ê
and ê′ are longer than f̂ . Thus p projects to a path that shortcuts e, contradicting the fact that B
is a good biface.

Lemma 15. In S(B) every path p between the two boundary components of S(B) is such that
ℓ(p) ≥ ℓ(e)/2.

Proof. Without loss of generality one of the two endpoints of p (at least) is a vertex v of B1.
Consider the other endpoint x of p, and the vertex w ̸= v of B1. There is a path q from x to w in
the boundary of S(B). Without loss of generality ℓ(q) ≤ ℓ(e)/2 since B is thin. Also e is a shortest
path since B is good. So ℓ(p) + ℓ(q) ≥ ℓ(e). We proved ℓ(p) ≥ ℓ(e)/2.

Proof of Proposition 8. Among the two interior edges of B1 let e be a shortest one. Let f be any
one of the two boundary edges of B1. We have ℓ(e) ≥ ℓ(f) since B is thin. Assume by contradiction
that there is in S a loop γ that encloses f by a factor of t > 2. Let x be the basepoint of γ. There
is a portion of γ that leaves x and enters the interior of S(B). This portion of γ cannot leave S(B)
via the other boundary edge of S(B), for otherwise ℓ(γ) ≥ ℓ(e)/2 by Lemma 15, so ℓ(γ) > ⟨x⟩f/t,
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a contradiction. Then γ intersects e. And f and e have a corner whose angle is smaller than π/4
since ℓ(γ) < ⟨x⟩f/2. This contradicts Lemma 14.

6.5 Upper bound on segment-happiness and length

In this section, given a segment e of S, we bound from above the segment-happiness and the length
of e using the enclosure of e. Our bounds depend on the surface S. More precisely, on the systole of
S and the diameter of S. But instead of the diameter of S, we consider an arbitrary triangulation
of S, and we use its number n of triangles together with the maximum length L of its edges (it is
easily seen that the diameter of S is smaller than or equal to nL). This will be more convenient
to us when analyzing Algorithm in Section 7, for then S will be given by a triangular portalgon,
whose 1-skeleton is a triangulation of S. We prove:

Proposition 9. Let e be a segment of S. Let s > 0 be smaller than the systole of S. Assume that
there is a triangulation of S with n ≥ 1 triangles, whose edges are all smaller than L > 0. Then
hS(e) = O(cS(e) · (1 + log cS(e) + log n+ log⌈L/s⌉)) and ℓ(e)/s = O(cS(e) · n · ⌈L/s⌉2).

In Proposition 9 the O() notation does not depend on S, it involves a universal constant. In
the second inequality of Proposition 9 the exact powers above ⌈L/s⌉ and n, here 2 and 1, do not
matter to us. We need only a polynomial in ⌈L/s⌉ and n. The rest of this section is devoted to the
proof of Proposition 9. First we need a few lemmas.

Lemma 16. Let t > 1. Assume that there is a shortest path whose relative interior crosses the
relative interior of e twice in the same direction, at points x and y. If the sub-segment of e between
x and y is shorter than ⟨x⟩e/2t then cS(e) > t.

Proof. Consider the portion p of the shortest path that starts just before its crossing at x, and ends
just before its crossing at y. Consider also the geodesic path q that runs parallel to the sub-segment
of e from y to x, such that the concatenation of p and q forms a loop γ. Base γ at x. There is a
unique geodesic loop γ′ homotopic to γ (where the base-point at x is fixed in the homotopy) since
the interior of S is flat. We have that γ′ is not the constant loop based at x; for otherwise γ would
be contractible, so p would be homotopic to the reversal of q, and so p would actually be equal to
the reversal of q since the interior of S is flat, a contradiction. Moreover γ′ is shorter than ⟨x⟩e/t;
indeed γ′ is not longer than γ, q is shorter that ⟨x⟩e/2t by assumption, and p is not longer than q
since p is a shortest path. Then γ′ is in general position with e. We shall prove that γ′ meets x on
both sides of e. This will prove the lemma for then γ′ will enclose e by a factor of ⟨x⟩e/ℓ(γ′) > t.

Let us prove that. Orient e so that γ crosses e from right to left. Consider the universal covering
space S̃ of S, and a lift ẽ of e in S̃. The interior of S̃ being flat, there is a geodesic L̃, containing
ẽ, such that on both ends L̃ is either infinite or reaches the boundary of S̃. And L̃ separates S̃ in
two connected components. Now let x̃ be the lift of x in ẽ. There are two lifts of γ′ incident to x̃:
one lift γ̃′0 starts at x̃, the other lift γ̃′1 ends at x̃. Let ã0 be the endpoint of γ̃′0, and let ã1 be the
startpoint of γ̃′1. We claim that ã0 lies strictly to the left of L̃, and that ã1 lies strictly to the right
of L̃. This claim implies that γ̃′0 meets x̃ on the left of ẽ, and that γ̃′1 meets x̃ on the right of ẽ,
which implies that γ′ meets x on both sides of e.

Let us prove the claim. First we prove that ã0 lies strictly to the left of L̃. To do so consider also
the lift p̃ of p that starts at x̃, and the lift q̃ of q that starts at the endpoint of p̃. The endpoint of q̃
is ã0 since the concatenation of p̃ and q̃ is a lift of γ, and since γ is homotopic to γ′. By definition
p̃ leaves x̃ on the left of L̃. Also p̃ is disjoint from L̃ except for its startpoint at x̃, the interior of
S being flat. Moreover q̃ is disjoint from L̃. For otherwise q̃ would intersect L̃ at a point z̃ whose
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distance to x̃ would be smaller than ⟨x⟩e/t. But then the sub-segment of L̃ between z̃ and x̃ would
be no longer, and so would be included in ẽ. In particular q̃ and ẽ would intersect, a contradiction.
This proves that ã0 lies strictly to the left of L̃.

To prove that ã1 lies strictly to the right of L̃, consider the lift ỹ of y in ẽ, and the lift p̃1 of p that
ends at ỹ. Then the startpoint of p̃1 is ã1, and it lies strictly to the right of L̃ since p̃1 meets ỹ on
the right of L̃, and since p̃1 is otherwise disjoint from L̃. This proves the claim, and the lemma.

Lemma 17. We have hS(e) = O(cS(e) · (1 + log⌈ℓ(e)/s⌉)).

Proof. Let t > 1. Assume hS(e) > 12t·(3+log⌈ℓ(e)/s⌉). We will prove cS(e) ≥ t, and this will prove
the lemma. In S there is a shortest path p that intersects e more than 12t · (3 + log⌈ℓ(e)/s⌉) times.
Cut e at its middle point. One of the two resulting sub-segments of e, say f , intersects p more than
6t · (3 + log⌈ℓ(e)/s⌉) times. Partition f into sub-segments f0, f1, . . . , fn with n ≤ 2 + log⌈ℓ(e)/s⌉,
where the sub-segment f0 contains the points x ∈ f such that ⟨x⟩e ≤ s/4, and where for every
1 ≤ i ≤ n the sub-segment fi contains the points x ∈ f such that 2i−3s ≤ ⟨x⟩e ≤ 2i−2s. There is
0 ≤ i ≤ n such that p intersects fi more than 6t times. Then the relative interior of p crosses fi
twice (at least) in the same direction at points x and y, such that the sub-segment of fi between x
and y is shorter than 2i−4s/t, since ℓ(fi) ≤ 2i−3s. Also i ≥ 1 as no shortest path crosses f0 twice,
since ℓ(f0) < s/2, and since the interior of S is flat. In particular ⟨x⟩e ≥ 2i−3s. Then cS(e) ≥ t by
Lemma 16.

Lemma 18. We have ℓ(e) = O(cS(e) · n⌈L/s⌉L).

Proof. Let t > 1. Assume ℓ(e) ≥ 600t · n⌈L/s⌉L. We will prove that cS(e) ≥ t, and this will prove
the proposition. To do so let d = 120n⌈L/s⌉L. Cut e into three segments, a middle segment e0 of
length d, and two peripheral segments each longer than 2t ·d. We claim that there is in S a shortest
path crossing the relative interior of e0 twice in the same direction. This claim implies cS(e) ≥ t by
Lemma 16, which proves the proposition.

Let us prove the claim. Consider a triangulation T of S with n triangles, whose edges are all
smaller than L > 0. Cut each edge of T into 2⌈L/s⌉ equal-length segments, that we shall call doors.
Each door is smaller than or equal to half the systole of S so it is a shortest path. There are at
most 6n⌈L/s⌉ doors since T has at most 3n edges. Each sub-segment e1 of length 4L of e0 contains
in its relative interior three points x0, x1, x2 in this order such that x0 /∈ p, x1 ∈ p, and x2 /∈ p for
some door p. The relative interior of e0 intersects at least 30n⌈L/s⌉ times doors this way, so there
is a door p intersected at least 5 times by the relative interior of e0. Then each intersection is a
single point (p and e0 do not overlap). Two of those intersection points may be endpoints of p, but
otherwise the relative interior of p crosses the relative interior of e0 at least three times. So p crosses
e0 twice in the same direction, which proves the claim, and the proposition.

Proof of Proposition 9. We have hS(e) = O(cS(e) · (1 + log⌈ℓ(e)/s⌉)) by Lemma 17. Also ℓ(e)/s =
O(cS(e) · n · ⌈L/s⌉2) by Lemma 18. So log(⌈ℓ(e)/s⌉) = O(1 + log cS(e) + log(n) + log⌈L/s⌉). This
proves the proposition.

7 Geometric analysis of the algorithm: proof of Proposition 1

In this section we complete the analysis of Algorithm to prove Proposition 1, which we restate
for convenience:
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Proposition 1. Let T be a portalgon of n triangles, whose sides are all smaller than L > 0.
Assume that S(T ) is flat. Let s > 0 be smaller than the systole of S(T ). One can compute in
O(n log2(n) · log2(2 + L/s)) time a portalgon of O(n · log(2 + L/s)) triangles, whose surface is
isometric to that of T , and whose segment-happiness is O(log(n) · log2(2 + L/s)).

We consider the setting of Proposition 1: we fix a portalgon T of n triangles, whose sides are
smaller than L > 0, and whose surface S(T ) is flat. Then we apply Algorithm to T , and we
analyze the execution using the notion of enclosure introduced in Section 6. In order to ease the
reading, in the whole section we denote by S = S(T ) the surface of T .

7.1 The inactive loops are not very enclosed

First we prove that any time during the execution the separating loops are “not very enclosed” in
S:

Lemma 19. Any time during the execution every separating loop e satisfies cS(e) ≤ 2.

Proof. Only step 2 of SimplifyTubes may create a separating loop, by marking a thin biface B
as inactive. Then B is is never touched again by the algorithm. So the algorithm maintains the
invariant that every separating loop e is adjacent to the surface of at least one inactive region that
is a thin biface. So cS(e) ≤ 2 by Proposition 8.

7.2 The geometry of the active region is simplified

In this section we show that running the algorithm simplifies the geometry of the active region. More
precisely the maximum length of the edges “very enclosed” in S (if any) scales down exponentially:

Proposition 10. After i ≥ 1 iterations of the main loop, let e be an edge of R1
A. If cS(e) > 22000 · i

then ℓ(e) < 21−iL.

Before proving Proposition 10 we analyze the operations performed independently with three
lemmas. Each application of InsertVertices improves the geometry of the active region:

Lemma 20. Consider the active regions RA and R′
A respectively before and after some application

of InsertVertices. Assume that there is an edge e′ of R′1
A such that cS(e′) > 2. Then there is an

edge e of R1
A such that cS(e) ≥ cS(e′) and ℓ(e) ≥ 2ℓ(e′).

Proof. First observe that e′ is not included in the boundary of S(R′
A) since e′ is enclosed and thus

not included in the boundary of S, and since e′ is not a separating loop by Lemma 19. So there
is an edge e of R1

A such that e′ is one of the two half-segments obtained after the insertion of the
middle point of e as a vertex. Then ℓ(e) = 2ℓ(e′). And cS(e) ≥ cS(e′) by Lemma 10.

The rest of the algorithm may deteriorate the geometry of the active region, but not too much:

Lemma 21. Consider the active regions RA and R′
A respectively before and after some application

of InsertEdges. Assume that there is an edge e′ of R′1
A such that cS(e′) > 14. Then there is an

edge e of R1
A such that cS(e) ≥ cS(e′)− 12 and ℓ(e) ≥ (1− 12/cS(e

′)) · ℓ(e′).

Proof. Here we crucially use the fact that every polygon of RA has degree at most six. so that at
most three edges are inserted within the polygon. Indeed either e′ was already an edge of R1

A and
there is nothing to do, or e′ has been inserted in some face F of R1

A. At most three edges were
inserted in F , and Proposition 6 applied at most three times gives a boundary edge e of F such
that cS(e) ≥ cS(e′)− 12 and ℓ(e) ≥ (1− 12/cS(e

′))ℓ(e′).
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Lemma 22. Consider the active regions RA and R′
A respectively before and after some application

of SimplifyTubes. Assume that there is an edge e′ of R′1
A such that cS(e′) > 6. Then there is an

edge e of R1
A such that cS(e) ≥ cS(e′)− 5 and ℓ(e) ≥ (1− 4/cS(e

′)) · ℓ(e′).

Proof. Assume that e′ was not already an edge of R1
A for otherwise there is nothing to do. Then

there is a good biface B computed by step 2 of SimplifyTubes such that e is one of the two
interior edges of B1. Also B is thick, for B has not been marked as inactive. So by Proposition 7
there is a boundary edge e of B1 such that cS(e) ≥ cS(e′)− 5 and ℓ(e) ≥ (1− 4/cS(e

′))ℓ(e′).

Proof of Proposition 10. Consider the active regions RA and R′
A respectively at the very beginning

of the algorithm, and after i iterations of the main loop. Assume that there is an edge e′ in R′1
A such

that cS(e′) > 22000 · i. During those i iterations there has been i applications of InsertVertices,
351i applications of InsertEdges, and 350i applications of SimplifyTubes. Also 12 · 351i + 5 ·
350i < 11000i. So Lemma 20, Lemma 21, and Lemma 22 imply that there is an edge e in R1

A

such that ℓ(e) ≥ 2i(1 − 11000i/cS(e
′))ℓ(e′) > 2i−1ℓ(e′). And ℓ(e) ≤ L since e belongs to the input

triangulation T 1.

7.3 Proof of Proposition 1

Finally, we complete the analysis of Algorithm and prove Proposition 1. We need a last prelimi-
nary lemma:

Lemma 23. Assume that S contains the surface of a tube X. Then the systole of S(X) is greater
than or equal to systole of S.

Proof. Otherwise one of the two loops of X1 that constitute the boundary of S(X) is contractible in
S. So this loop bounds a topological disk in S by a result of Epstein [9, Theorem 1.7]. The interior
of the disk is flat, and its boundary is geodesic except possibly at the basepoint of the loop. This
contradicts the formula of Gauss–Bonnet.

Proof of Proposition 1. Apply Algorithm to T with N = ⌈log(2+L/s)⌉, and return the resulting
triangular portalgon R. By Proposition 5 the number of polygons of the active region is O(n)
throughout the execution. So in the end R has O(n · log(2 +L/s)) triangles, since each iteration of
the main loop marks O(n) triangles as inactive, and since there are ⌈log(2+L/s)⌉ iterations of the
main loop. We have two claims that immediately imply the proposition.

Our first claim is that the algorithm takes O(n log2(n) · log2(2 + L/s)) time. Let us prove
this first claim. Each application of InsertVertices or InsertEdges takes O(n) time. And each
application of SimplifyTubes or Gardening takes O(n log(n)·log(2+Λ/s)) time by Proposition 4
and Lemma 23, where Λ is the maximum length reached by an edge of the 1-skeleton of the active
region during the execution. Now let us bound Λ. If at some point an edge e of the 1-skeleton
of the active region is longer than L then cS(e) = O(log(2 + L/s)) by Proposition 10. Moreover
ℓ(e)/s = O(cS(e) ·n⌈L/s⌉2) by Proposition 9. This proves log(2+Λ/s) = O(log(n)+ log(2+L/s)),
which proves the claim.

Our second claim is that in the end every edge e of R1 satisfies hS(e) = O(log(n) · log2(2+L/s)).
Let us prove this second claim. First observe that if e is in R1

A then cS(e) < 22000 log(2 + L/s),
for otherwise Proposition 10 would imply ℓ(e) < 2s, implying that no loop encloses e in S, a
contradiction. In this case hS(e) = O(log(2 + L/s) · (log(n) + log(2 + L/s))) by Proposition 9, and
we are done. Every other edge of R1 belongs to the 1-skeleton of an inactive good biface B. Every
boundary edge e of B1 is either a boundary component of S or a separating loop, so cS(e) ≤ 2 by
Lemma 19, and so hS(e) = O(log(n) + log(2 +L/s)) by Proposition 9. Every interior edge f of B1
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then satisfies hS(f) = O(log(n) + log(2 + L/s)) by Lemma 2. This proves the second claim, and
the proposition.

8 Extension to non-flat surfaces: proof of Proposition 2

In this section we finally prove Proposition 2, which we restate for convenience:

Proposition 2. Let T be a portalgon of n triangles, of aspect ratio r. One can compute in
O(n log2(n) · log2(r)) time a portalgon of O(n · log(r)) triangles, whose surface is S(T ), and whose
happiness is O(n log(n) · log2(r)).

We deduce Proposition 2 from Proposition 1, essentially by cutting out caps around the singu-
larities in the interior of the surface, by applying Proposition 1 to the truncated surface, and by
putting the caps back afterward. See Figure 7.

Figure 7: Cutting out a cap in the proof of Proposition 2.

Proof of Proposition 2. Let S := S(T ) be the surface of T . Let d be the minimum height of the
triangles of T . Given a vertex v of T 1 in the interior of S, we define a region around v in S, as
follows. On every directed edge e of T 1 whose tail is v, place a point at distance d/6 from the tail
of e along e. Link those k ≥ 1 points in order (clockwise say, but counter-clockwise would do to)
around v, using geodesic segments within the faces of T 1 incident to v. In each corner of T 1 incident
to v there is a newly created triangle incident to v. Those k triangles define a region C around v,
which we call cap of v. Importantly, every point in the cap of v is at distance smaller than or equal
to d/6 from v in S. Also every segment p tracing the boundary of C satisfies ℓ(p) ≥ d/6r. To see
that consider the face F of T 1 containing p, and the two sides e0 and e1 of F incident to v. For each
i consider the point on ei at distance m := min(ℓ(e0), ℓ(e1)) from v along ei. Join those two points
by a geodesic segment q in F . Then q is at least as long as the minimum height of the triangle
corresponding to F , so ℓ(q) ≥ m/r. Moreover ℓ(p)/ℓ(q) = d/(6m) by the theorem of Thales. This
proves ℓ(p) ≥ d/6r.

For the sake of analysis, given an arbitrary vertex v of T 1 (possibly on the boundary of S),
we define another kind of region around v. Link the middle points of the edges around v in order
around v. The resulting triangles around v constitute the protected region of v. Importantly, every
path smaller than d/2 starting from v must lie in the protected region of v. Indeed the relative
interior of every geodesic path p smaller than d starting from v is included in a single face or edge
of T 1. Then every prefix of p smaller than ℓ(p)/2 lies in the protected region of v.

First construct in O(n) time a triangular portalgon T0 whose surface is S, as follows. Consider
every singularity in the interior of S (if any). This singularity is a vertex v of T 1. Trace the
boundary of the cap around v in the faces of T 1. Then cut those faces along the trace, as in
Figure 7. Afterward some polygons of T0 may not be triangles, so cut each polygon of T0 into
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triangles along shortcuts. Now remove the triangles corresponding to the caps from T0, and let T1
be the resulting triangular portalgon. The surface S(T1) is flat.

Our first claim is that the systole of S(T1) is greater than or equal to d/6r. By contradiction
assume that there is a non-contractible closed curve γ in S(T1) smaller than d/6r. Without loss
of generality γ intersects a vertex w of T 1

1 ; indeed if such a γ has minimum length and does not
intersect any vertex of T 1

1 then it can be slided along the surface, without changing its length, until
it intersects a vertex of T 1

1 . If w is a vertex of T 1, then γ lies in the protected region around w,
and so γ is contractible in S(T1), a contradiction. If w is a vertex on the boundary of some cap C
removed, then γ lies in the protected region around the central vertex of C. In that case γ is at
least as long as any edge of the boundary of C, so ℓ(γ) ≥ d/6r. This proves the first claim.

The number of triangles and the maximum side length of a triangle of T1 may be greater than
those of T , but only by a constant factor. Using the first claim and Proposition 1, replace T1 by
a portalgon of O(n log(r)) triangles, whose surface is that of T1, and whose segment-happiness is
O(log(n) log2(r)), all in O(n log2(n) log2(r)) time. Place back the caps on S(T1), and return the
resulting triangular portalgon T ′.

The segment-happiness of T ′ and the happiness of T ′ do not differ by more than a constant
factor since the polygons of T ′ are all triangles. Our second claim is that the segment-happiness of
T ′, and thus the happiness of T ′, is bounded by O(n log(n) log2(r)). To prove the second claim, we
call cap path any shortest path in S that lies in the closure of some cap. We call rogue path any
shortest path in S whose relative interior is disjoint from the closures of the caps. Every rogue path
intersects every edge of T ′1 at most O(log(n) log2(r)) times, since the segment-happiness of T1 is
O(log(n) log2(r)). Also every cap path intersects every edge of T ′1 at most once. Now consider a
shortest path p in S. Then p uniquely writes as a sequence X of alternatively cap paths and rogue
paths. Also, there cannot be two distinct cap paths q0 and q1 in X that both lie in the same cap
C. For otherwise any point of q0 would be at distance at most d/3 from any point of q1. Also the
subpath of p between q0 and q1 contains a rogue path that must leave the protected region around
the central vertex of C, and is thus longer than d/2− d/6 = d/3. That contradicts the fact that p
is a shortest path. We proved that there are at most O(n) paths in X, each intersecting at most
O(log(n) log2(r)) times any given edge of T ′1. This proves the second claim, and the proposition.

9 Lower bound

In this section we provide our lower bound. Recall from Section 2.3 that we consider the real
RAM model of computation described by Erickson, van der Hoog, and Miltzow [12], including the
square root operation. Recall also that, to represent a portalgon T on a real RAM, we describe
each polygon of T is by the list of its vertices, and each vertex is by its two coordinates, stored
in the memory array dedicated to reals. So displacing the polygons in the plane provides different
representations of T .

To obtain our lower bound, we use the fact that, on a real RAM, the floor of a positive real
number cannot be computed in (strongly) sub-logarithmic time (Lemma 24 below), and we reduce
the problem of computing the floor of a positive real number to the problem of computing a Delaunay
tessellation, in order to transpose the lower bound.

More formally, we use the following:

Lemma 24. Let c ∈ (0, 1). There is no real RAM program computing ⌊x⌋ from x ∈ (1,∞) in
O((log x)c) time.

In Lemma 24 the notation (1,∞) stands for the set of real numbers greater than 1. The
constant 1 is only here to ensure that log x > 0 so that (log x)c is defined, any larger constant
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would do. As already mentioned, a result similar to Lemma 24 was proved by Blum, Shub, and
Smale [3, Section 4, Proposition 3] on a different machine, excluding the square root operation. In
Appendix E, we adapt their arguments to the machine described by Erickson, van der Hoog, and
Miltzow [12], including the square root operation, for completeness.

Now, for every x ∈ (1,∞), we consider a particular portalgon Tx. See Figure 8. It has exactly
two triangles. The first triangle has vertices (0, 0), (1, 0) and (x, 2) in some representation of Tx.
The second triangle is isometric to the first triangle, and in Tx the sides of the first triangle are
matched with the corresponding sides of the second triangle. The surface S(Tx) is a flat torus. We
denote by Dx the portalgon of the Delaunay tessellation of S(Tx), see Figure 8. We prove:

Theorem 2. Let c ∈ (0, 1). The aspect ratio of Tx is O(x2). There is no real RAM program
computing a representation of Dx from x ∈ (1,∞) in O((log x)c) time.

Figure 8: (Left) The polygons in the portalgon Tx. (Right) The polygons in the portalgon Dx,
depending on whether x = ⌊x⌋ or not.

Theorem 2 is almost immediate from Lemma 24:

Proof. The aspect ratio of Tx is O(x2) since the triangles of Tx have maximum side length O(x)
and minimum height Ω(1/(1+ x)). We now prove that there is no real RAM program computing a
representation of Dx from x ∈ (1,∞) in O((log x)c) time for some c ∈ (0, 1). To do so we describe a
real RAM program that, given x and a representation of Dx, computes ⌊x⌋ in constant time. This
will prove the theorem by Lemma 24. There are two cases. See Figure 8. Either Dx has a unique
polygon (in fact a rectangle), in which case ⌊x⌋ = x, so we return x. Otherwise D has two triangles.
In this case let ∆ be any of these two triangles in our representation of Dx. Our triangle ∆ has a
unique side of length one. An orientation-preserving isometry of the plane displaces this unit length
side to the segment between (0, 0) and (1, 0). The same isometry displaces the third vertex of ∆
to a point (u, v) such that u = x − ⌊x⌋. We compute u and return x − u. This can be done using
only the basic arithmetic operations of the real RAM on the coordinates of the vertices of ∆. The
theorem is proved.
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A Appendix of Section 1

A.1 Proof of Lemma 1

Proof of Lemma 1. Clearly r ≤ r′. For the other inequality let e be a side of a triangle of T whose
length is the maximum possible over all the triangles of T and all their sides. And let ∆ be a
triangle such that the smallest height of ∆ is the minimum d over all the triangles of T and all their
heights. By definition r′ = ℓ(e)/d. Since S(T ) is connected there is a sequence of sides of triangles
e0, . . . , e2k for some 0 ≤ k < n such that e0 belongs to ∆, e2k = e, for every 0 ≤ i < n the side
e2i is matched with the side e2i+1, and the sides e2i+1 and e2i+2 belong to the same triangle. Then
ℓ(e2i+2) ≤ r · ℓ(e2i+1) and ℓ(e2i+1) = ℓ(e2i). So ℓ(e)/d ≤ ℓ(e0)rn−1/d ≤ rn.

A.2 Proof of Corollary 1

Proof of Corollary 1. Apply Theorem 1 to compute the portalgon T ′ of the Delaunay tessellation of
S(T ) in O(n3 log2(n) · log4(r)) time. Some polygons of T ′ may not be triangles. Cut the polygons
of T ′ that are not triangles (if any) along vertex-to-vertex arcs to obtain a triangular portalgon T ′′.
Then T ′′ is the portalgon of a Delaunay triangulation of S(T ), so T ′′ has bounded happiness by
the result of Löffler, Ophelders, Silveira, and Staals [20, Section 4]. Moreover the vertex set of its
1-skeleton T ′′1 is exactly the set of singularities of S(T ), except if S(T ) is a flat torus in which case
T ′′1 has exactly one vertex, so in any case T ′′ has O(n) triangles.
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A.3 Proof of Corollary 2

Proof of Corollary 2. Theorem 1 computes the portalgons T and T ′ of the Delaunay tessellations
of respectively S(T ) and S(T ′) in O(n3 log2(n) · log4(r) time. We claim that we can determine
whether T and T ′ are equal in O(n2) time. The claim immediately implies the corollary.

Let us prove the claim. We consider the sides of the polygons of T and T ′. There are O(n)
such sides. Fix a side s of a polygon of T . For every side s′ of a polygon of T ′, determine in O(n)
time whether there exists a one-to-one correspondence φ from the sides of the polygons of T to
the sides of the polygons of T ′ that maps s to s′, the boundary closed walks of the polygons of
T to the boundary closed walks of the polygons of T ′, and the matching of T to the matching of
T ′. If φ exists then φ is unique since S(T ) and S(T ′) are connected: construct φ in O(n) time.
Then determine in O(n) time if for every polygon P of T there is an orientation-preserving isometry
τP : R2 → R2 such that φ(s) = τP (s) for every side s of P . In which case return correctly that
T and T ′ are equal. In the end, if every polygon side s′ of T ′ has been looped upon, and if no
equality has been found, return correctly that T and T ′ are distinct. This proves the claim, and
the corollary.

B Appendix: proof of Proposition 4

In this section we prove Proposition 4, which we restate for convenience:

Proposition 4. Let X be a tube with n triangles, whose sides are smaller than L > 0. Let s > 0
be smaller than the systole of S(X). One can compute a good biface whose surface is S(X) in
O(n log n · log(2 + L/s)) time.

Proposition 4 is similar to but different from a result of Löffler, Ophelders, Silveira, and Staals [20,
Theorem 45] (building upon a ray shooting algorithm of Erickson and Nayyeri [11]), in which the
authors provide an algorithm to transform a biface into a portalgon of bounded happiness, and of
bounded combinatorial complexity. They extend their result from bifaces to portalgons X such that
the dual graph of X1 in S(X) has at most one simple cycle, but unfortunately this does not include
tubes. We extend their result to tubes to prove Proposition 4, reusing some of ideas developed in
the core of the paper.

We need a few lemmas. The following is a corollary of [20, Theorem 45]:

Lemma 25. Let B be a biface of happiness h. One can compute in O(1 + log h) time a good biface
whose surface is that of B.

Proof. By the result of Löffler, Ophelders, Silveira, and Staals [20, Theorem 45] we can compute
in O(1 + log h) time a portalgon T , whose surface is S(B), whose happiness is O(1), and whose
1-skeleton T 1 has O(1) edges. Without loss of generality the two vertices b0 and b1 of B1 are also
vertices of T 1, and we know which vertices of the polygons of T correspond to b0 and b1.

We now describe how to compute, in constant time, from T , a good biface of S(T ). The key
thing is that we can exploit the fact that T has O(1) combinatorial complexity and happiness to
compute by exhaustive search. First compute, in constant time, by exhaustive search, a shortest
path q between b0 and b1 in S(T ): represent q by its pre-image in the polygons of T . Then cut the
polygons of T along the pre-image of q: every time a polygon is cut in two along a segment a, the
two edges issued of a are not matched in the resulting portalgon (the goal is to cut the surface of
T , not just changing T ). Consider the resulting portalgon D. Then S(D) is homeomorphic to a
closed disk. The two endpoints b0 and b1 of q become a set V of four vertices of D1 that lie on the
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boundary of S(D). Every singularity of S(D) lies on the boundary of S(D) and belongs to V . Now
replace D by a triangular portalgon D′, of the same surface, and such that the vertex set of D′1 is
exactly V . This can be done for example by iteratively inserting vertex-to-vertex arcs in the faces of
D1 to make D1 a triangulation, and by deleting a vertex v of D1 and its incident edges. When v lies
on the boundary of S(D), only the edges whose relative interior is included in the interior of S(D)
are deleted. In the end, identify back the occurrences of q on the boundary of S(D′), by matching
the two corresponding sides of polygons in D′, thereby obtaining a biface B′ of S(B) such that q is
an interior edge of B′. Change the other interior edge of B′ if necessary so that B′ is good.

Consider k ≥ 1 bifaces B1, . . . , Bk. For every 1 ≤ i ≤ k let ei and fi be the two sides of triangles
of Bi that correspond to the boundary of S(Bi). If i < k, assume ℓ(ei) = ℓ(fi+1), and match ei with
fi+1. The resulting triangular portalgon T is a concatenation of the bifaces B1, . . . , Bk. Note that
T is not necessarily a tube, for the vertices of T 1 in the interior of S(T ) may be singularities.

Lemma 26. Let T be the concatenation of two good bifaces. If T is a tube, then one can compute
in constant time a good biface whose surface is that of T .

Proof. Consider a shortest path p in S(T ), and the loop edge e of T 1 that lies in the interior of
S(T ), in-between the surfaces of the two bifaces. We claim that the relative interior of p does not
cross the relative interior of e more than twice. By contradiction assume that p crosses the relative
interior of e three times. There is a connected component S0 of S(T ) \ e whose angle at the base
vertex of e is greater than or equal to π. Some portion p′ of p enters S0 and then leaves S0 by two
of the three crossings between p and e. One of the two connected components of S0 \ p′, say S1, is
homeomorphic to an open disk. By construction S1 has at most three angles distinct from π: at the
two points where p crosses e, and possibly at the base vertex of e. By the Gauss-Bonnet theorem,
there are exactly three such angles, not less, and they are all smaller than π. One of them is the
incidence of S0 and the base vertex of e. This is a contradiction. This proves the claim.

Using the claim immediately the intersection of p and e has O(1) connected components, so p
writes as a concatenation of k = O(1) paths p1, . . . , pk such that for every 1 ≤ i ≤ k the path pi is
either included in e or its relative interior is disjoint from e. Every edge f ̸= e of T 1 intersects pi less
than 7 times: if f is included in the boundary of S(T ) then f intersects pi at most once, otherwise
Lemma 2 applies. So f intersects p less than O(1) times. We proved that the segment-happiness
of T is O(1). Then the happiness of T is also O(1) since the polygons of T are all triangles. So we
can compute a good biface whose surface is that of T in constant time, exactly as in the proof of
Lemma 25.

We will use the following simple consequence of Euler’s formula, similar to Lemma 6:

Lemma 27. Let S be the topological annulus. Let Y be a topological triangulation of S that has
only one vertex on each boundary component of S. Among the vertices of Y that lie in the interior
of S and are not incident to any loop edge, at least half have degree smaller than or equal to ten.

Proof. We may assume without loss of generality that no vertex of Y in the interior of S is incident
to a loop edge, by cutting S open at an interior loop edge and recursing on the resulting two
triangulations otherwise. Euler’s formula gives m − m1 + m2 = 0, where m, m1, and m2 count
respectively the vertices, edges, and faces of Y 1. Double counting gives 3m2 = 2m1 − 2 and∑

v deg v = 2m1, where the sum is over the vertices v of Y . Then
∑

v(6 − deg v) = 4. The two
vertices of Y on the boundary of S have degree greater than or equal to four. So in the interior of
S every vertex of degree greater than ten must be compensated by a vertex of degree smaller than
or equal to ten.
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Now we start proving Proposition 4. In particular we fix a tube X with n triangles, whose sides
are all smaller than some L > 0.

Lemma 28. One can compute in O(n log n) time a concatenation of less than 3n bifaces, whose
surface is that of X, whose edges are all shorter than (3n)cL with c = log14/13(3) < 15.

Proof. Let us first describe the algorithm before analyzing it. As long as there are vertices of X1 in
the interior of S(X) that are not incident to any loop edge and have degree smaller than or equal
to ten, we consider a maximal independent set V of such vertices, and we do the following. First we
delete all the vertices in V along with their incident edges. Then we insert arbitrary vertex-to-vertex
arcs in the faces of X1 to make X1 a triangulation again.

The algorithm terminates since the number of vertices of X1 decreases at each iteration. In
the end every vertex in the interior of S(X) is incident to a loop edge by Lemma 27, so X is a
concatenation of less than m bifaces, where m ≤ 3n is the initial number of vertices of X1. Each
iteration can be performed in O(n) time by maintaining a bucket with the vertices of degree smaller
than or equal to ten. And we claim that there less than log14/13m iterations. Before proving the
claim, observe that it implies the lemma. Indeed the algorithm then terminates in O(n log n) time.
Also no edge can get longer than 3log14/13 mL = mcL since the maximum edge length of X1 cannot
be multiplied by more than 3 at each iteration.

Let us now prove the claim. Consider the number m′ of vertices of X1 not incident to any loop
edge that lie in the interior of S(X). By Lemma 27, if m′ > 0 before an iteration of the algorithm,
then at least m′/2 such vertices have degree smaller than or equal to ten. So V contains at least
m′/14 vertices, which are deleted. Every non-deleted vertex that was incident to a loop edge before
the iteration remains incident to a loop edge after the iteration. We proved that m′ is divided by
at least 14/13 during the iteration, which proves the claim.

Proof of Proposition 4. Apply Lemma 28, and replace X in O(n log n) time by a concatenation of
less than 3n bifaces whose edges are smaller than (3n)cL for some constant c > 0. Each biface B
has segment-happiness O(1 + (3n)cL/s); indeed the systole of S(B) is greater than or equal to the
systole of X, so every segment e in S(B) satisfies hS(B)(e) = O(1 + ℓ(e)/s). Replace B by a good
biface whose surface is that of B in O(log(n)+ log(2+L/s)) time with Lemma 25. Doing so for all
bifaces takes O(n · (log(n)+ log(2+L/s))) time in total. We crudely bound this running time from
above by O(n log(n) · log(2 + L/s)). In the end apply Lemma 26 repeatedly to merge those O(n)
good bifaces into a single good biface, in O(n) total time.

C Appendix: Voronoi diagram and Delaunay tessellation

In this section we provide elementary definitions and properties of Delaunay tessellations and
Voronoi diagrams, for use in Appendix D. This is all folklore, but we could not find all the ex-
act statements in the literature, so we provide proofs for completeness.

C.1 Delaunay tessellations

Consider a closed polyhedral surface S, and a finite non-empty V ⊂ S containing all singularities of
S. We consider the definition of Bobenko and Springborn [4, Section 2] of the Delaunay tessellation
of (S, V ). First, they define an immersed empty disk as a pair (D,φ) where D is an open metric
disk of R2, and φ : D → S is a map defined on the closure D of D that satisfies the following: the
restriction of φ to D is an isometric immersion, and φ(D) ∩ V = ∅. Note that φ is not necessarily
injective. Bobenko and Springborn [4, Proposition 4] proved:
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Lemma 29 (Bobenko and Springborn). There is a unique tessellation D of S such that for every
immersed empty disk (D,φ), if φ−1(V ) is not empty, then the convex hull of φ−1(V ) projects via φ
to either a vertex, an edge, or the closure of a face of D, and such that every vertex, edge, and face
of D can be obtained this way.

The tessellation D given by Lemma 29 is the Delaunay tessellation of (S, V ). It is “in general”
a triangulation, but not always.

We will also use the following definition. For every point x ∈ S there is an immersed empty disk
(D,φ) such that φ maps the center of D to x, and such that φ−1(V ) ̸= ∅. And (D,φ) is unique to
x in the sense that if (D′, φ′) is another such immersed empty disk then there is a plane isometry
ψ : R2 → R2 satisfying D′ = ψ(D) and φ = φ′ ◦ ψ. We say that (D,φ) is the maxi-disk of the
point x.

C.2 Voronoi diagram

Again, consider a closed polyhedral surface S, and a finite non-empty V ⊂ S containing all singu-
larities of S. The Voronoi diagram of (S, V ) contains the points x ∈ S such that the distance
between x and V is realized by at least two distinct paths in S. Note that it is possible for the
Voronoi diagram of (S, V ) to contain a point x such that all the shortest paths between x and V
end at the same point of V . This is for example the case if S is a flat torus and V contains exactly
one point of S. In this section we prove the following:

Lemma 30. Let S be a closed polyhedral surface. Let V ⊂ S be finite, non-empty, and containing
all singularities of S. The Voronoi diagram of (S, V ) is a graph with finitely many vertices in
which every vertex has degree greater than or equal to three, every edge is geodesic, every face is
homeomorphic to an open disk and contains exactly one point of V , and every angle at a corner of
a face is smaller than or equal to π.

Note that without the assumption that V contains all the singularities of S, it would be possible
for the Voronoi diagram of (S, V ) to not be a graph with geodesic edges.

Proof of Lemma 30. Consider the Voronoi diagram V of (S, V ). We have three claims that imme-
diately imply the lemma. Our first claim is that V is a graph with finitely many vertices, in which
every vertex has degree greater than or equal to three, and in which every edge is geodesic. To prove
the first claim consider a point x ∈ S, and the maxi-disk (D,φ) of x. Let x⋆ be the center of D.
The geodesic paths between x⋆ and φ−1(V ) in R2 correspond via φ to the shortest paths between x
and V in S. So x belongs to V if and only if φ−1(V ) contains several points. Assume that x belongs
to V, and let m ≥ 2 be the number of points in φ−1(V ). Consider, in R2, the Voronoi diagram of
φ−1(V ), which we denote by X. Then X consists in m geodesic rays emanating from x⋆. There is
an open ball O ⊂ D on which φ is injective, containing x⋆, and such that φ(X ∩ O) = V ∩ φ(O).
There are two cases. If m = 2 then V is locally a geodesic path around x. If m ≥ 3 then V is
locally a geodesic star whose central vertex is x. In particular V is a graph whose minimum degree
is greater than or equal to three, and whose edges are geodesic segments. And V has finitely many
vertices since S is compact. That proves the first claim.

Now consider a face F of V. Our second claim is that F is simply connected, and that F
contains exactly one point of V . This implies that F is homeomorphic to an open disk since F is
not homeomorphic to a sphere. To prove the second claim first consider a point x ∈ F . There is
a unique shortest path p from x to V . Then p is disjoint from V. So the endpoint of p belongs to
F . That proves F ∩ V ̸= ∅. Now consider the universal covering space F̃ of F . Then F̃ does not
contain two distinct lifts of points of V . For otherwise let Ṽ contain the lifts of the points of V in
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F̃ . There is a point x̃ ∈ F̃ whose distance to Ṽ is realized by two distinct paths. And x̃ lifts a point
of V, a contradiction. That proves the second claim.

Finally, consider a vertex v of V. Our third claim is that around v the angles between consecutive
edges of V are all smaller than or equal to π. To prove the claim consider the maxi-disk (D,φ) of
v. Let v⋆ be the center of D. Let X be the Voronoi diagram of φ−1(V ) in the plane. The faces
of X are all convex, being intersections of half-planes. So the angles between consecutive rays of
X around v⋆ are all smaller than or equal to π. There is an open disk O on which φ is injective,
containing v⋆, such that φ(X ∩O) = V ∩ φ(O). That proves the third claim, and the lemma.

C.3 Voronoi diagram and Delaunay tessellation

A graph G is cellularly embedded on a surface S if the faces of the embedding are all homeomorphic
to open disks. In this section, given two graphs G and H cellularly embedded on S, we say that G
and H are isomorphic if there is an orientation-preserving homeomorphism of S that maps G to
H, for some orientation of S. This does not depend on the orientation of S. We prove the following:

Lemma 31. Let S be a closed polyhedral surface. Let V ⊂ S be finite, non-empty, and containing
all singularities of S. The Voronoi diagram of (S, V ) is isomorphic to the dual of the Delaunay
tessellation of (S, V ).

(Recall that in Lemma 31 the Voronoi diagram of (S, V ) is a graph cellularly embedded on S
by Lemma 30.)

Proof of Lemma 31. Consider the Voronoi diagram V of (S, V ), and the Delaunay tessellation D of
(S, V ). Consider a point x of S, and its maxi-disk (D,φ). We already proved that x is a vertex of
V is and only if φ−1(V ) contains at least three points. This is the case if and only if the convex
hull of φ−1(V ) projects via φ to the closure of a face f of D (Lemma 29). Every face of D can be
obtained this way (Lemma 29), and distinct vertices of V are clearly mapped to distinct faces of D.
So this defines a one-to-one correspondence between the vertices of V and the faces of D. When a
vertex v of V corresponds to a face f of D this way we say that v is dual to f .

Now fix a vertex v of V, and its dual face f of D. We call side of f any directed edge of D
that sees f on its left. We now relate the directed edges based at v in V to the sides of f . Again,
let (D,φ) be the maxi-disk of v. Let v⋆ be the center of D, and let y0, . . . , ym−1 be the m ≥ 3
points of φ−1(V ). In R2 the Voronoi diagram of φ−1(V ) consists in m geodesic rays r0, . . . , rm−1

emanating from v⋆, so that r0, y0, . . . , rm−1, ym−1 are in clockwise order around v⋆. There is an
open ball O ⊂ D on which φ is injective, containing v⋆, such that within O the rays r0, . . . , rm−1

correspond via φ to the directed edges e0, . . . , em−1 emanating from v in V. For every i the geodesic
path from yi to yi+1 corresponds via φ to a side e′i of f , indices are modulo m. We say that ei and
e′i are dual. This duality is a one-to-one correspondence between the directed edges based at v and
the sides of f . The former are cyclically ordered around v, the latter are cyclically ordered along
the boundary of f , and the duality correspondence respects these cyclic orders.

We claim that if a directed edge e0 of V is dual to a directed edge e′0 of D, then the reversal
of e0 is dual to the reversal of e′0. The claim immediately implies the lemma, for then the duality
correspondences define the desired graph isomorphism between V and D. Let us prove the claim.
Let e′1 be the reversal of e′0, and let e1 be the dual of e′1. We shall prove that e1 is the reversal of e0.
We consider the maxi-disks (D0, φ0) and (D1, φ1) of the base vertices of e0 and e1, and we realize
them so that they agree on the geodesic segment p that is the pre-image of the common edge of e′0
and e′1. Then φ0 and φ1 agree on D0∩D1, so they agree with a common map φ0∪φ1 : D0∪D1 → S.
Let q be the geodesic segment between the centers of D0 and D1. Then q is contained in D0 ∪D1,
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and projects via φ0 ∪ φ1 to the common edge of e0 and e1 in V. Indeed for every point x⋆ in the
relative interior of q the maxi-disk (D,φ) of φ(x⋆) can be realized so that x⋆ is the center of D, and
so that φ agrees with φ0 ∪ φ1 on D ∩ (D0 ∪D1). Then φ−1(V ) contains exactly the two endpoints
of p, and so φ(x⋆) belongs to the relative interior of an edge of V. This proves the claim, and the
lemma.

D Appendix: Computing the Delaunay tessellation

See Appendix C for basic definitions and properties of Delaunay tessellations and Voronoi diagrams.
In this section we prove Proposition 3, which we restate for convenience:

Proposition 3. Let T be a portalgon of n triangles, of happiness h, whose surface S(T ) is closed.
One can compute the portalgon of the Delaunay tessellation of S(T ) in O(n2h log(nh)) time.

Proposition 3 slightly extends known results, and is not surprising at all, but we provide proofs for
completeness. Our strategy for computing the Delaunay tessellation is, classically, to first compute
the Voronoi diagram:

Proposition 11. Let T be a portalgon of n triangles, of happiness h. Let V be a set of vertices
of T 1. Assume that V is not empty and contains all singularities of S(T ). We can compute in
O(n2h log(nh)) time a portalgon T ′ of O(n2h) triangles, whose surface is S(T ), and a subgraph V
of T ′1, such that V is the Voronoi diagram of (S(T ), V ).

We will then derive the Delaunay tessellation of from the Voronoi diagram:

Proposition 12. Let T be a portalgon of n triangles. Let V be a set of vertices of T 1. Let V be
a subgraph of T 1. Assume that V is not empty and contains all singularities of S(T ), and that V
is the Voronoi diagram of (S(T ), V ). We can compute the portalgon of the Delaunay tessellation of
(S(T ), V ) in O(n) time.

Proposition 11 and Proposition 12 will immediately imply Proposition 3:

Proof of Proposition 3, assuming Propositions 11 and 12. Let V contain the singularities of S(T ),
except if S(T ) is a flat torus in which case let V contain a single arbitrary vertex of T 1. Apply
Proposition 11 to replace T by a portalgon T ′ of O(n2h) triangles, and to compute a subgraph V of
T ′1 that is also the Voronoi diagram of (S(T ), V ), all in O(n2h log(nh)) time. Apply Proposition 12
to derive from T ′ and V the portalgon of the Delaunay tessellation of (S(T ), V ) in O(n2h) time.

All there remains to do is to prove Proposition 11 and Proposition 12. We prove Proposition 12
in Section D.1, and we prove Proposition 11 in Section D.2.

D.1 Computing the Delaunay tessellation from the Voronoi diagram

In this section we prove Proposition 12, which we restate for convenience:

Proposition 12. Let T be a portalgon of n triangles. Let V be a set of vertices of T 1. Let V be
a subgraph of T 1. Assume that V is not empty and contains all singularities of S(T ), and that V
is the Voronoi diagram of (S(T ), V ). We can compute the portalgon of the Delaunay tessellation of
(S(T ), V ) in O(n) time.
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In the setting of Proposition 12, our goal is to compute the portalgon of the Delaunay tessellation
D of (S(T ), V ). If we do not care about the shapes of the polygons in the portalgon, then we can
easily compute this portalgon from the embedded graph V, due to the duality between D and V
(Lemma 31). All there remains to do is to compute the shape of each polygon in the portalgon.
First we need a definition and a lemma. Consider a walk W in the dual of T 1. To ease the reading
assume that every edge of T 1 is incident to two distinct faces of T 1; the following definition extends
in a straightforward manner to general triangulations. In the plane R2 realize the k ≥ 1 faces visited
by W isometrically, and respecting their orientation, by respective triangles ∆1, . . . ,∆k. Make sure
that for every 1 ≤ i < k the triangles ∆i and ∆i+1 agree on the placement of the i-th edge of T 1

crossed by W . The resulting sequence ∆ = (∆1, . . . ,∆k) is an unfolding of W . In general a vertex
w of T 1 may occur several times among the vertices of the triangles in ∆, and those occurrences
may be at distinct points in the plane. Nevertheless:

Lemma 32. If the faces of T 1 visited by W are all included in the same face of V, and if w ∈ V ,
then all the occurrences of w in ∆ are at the same point of R2.

Proof. Let F be the face of V containing the faces of T 1 visited by W . By Lemma 30 the face
F is homeomorphic to an open disk, and w is the unique point of V ∩ F . Let F̂ be the surface
homeomorphic to a closed disk obtained by cutting the closure of F along the boundary of F . The
angles at the corners of F̂ are smaller than or equal to π by Lemma 30. So the shortest paths between
those corners and w are, together with the boundary edges of F̂ , the edges of a triangulation Y of
F̂ . The dual of Y is a cycle, and w is the central vertex of Y . If ∆ is an unfolding of a walk in the
dual of Y , then all occurrences of w in ∆ are at the same point in the plane. This easily extends
to every other triangulation Y ′ of F̂ , by considering a triangulation of F̂ that contains both Y and
Y ′.

In the portalgon of D, consider a polygon P . We describe how to compute the positions of the
vertices of P . Note that these positions are only defined up to translating and rotating P in the
plane. As a preliminary, consider the vertex v of the Voronoi diagram V that is dual to P . Embed
a neighborhood of v in the plane R2, isometrically and respecting the orientation, by embedding
the faces of T 1 incident to v. This is possible since v is flat.

Assign to each vertex x of P a point πP (x) ∈ R2 as follows. The vertex x of P is dual to an
incidence c between the vertex v of V and some face F of V. In this incidence c, consider one of the
faces W0 of T 1 that we embedded in the plane, and its embedding W ∗

0 . Consider the unique point
w ∈ V ∩ F (Lemma 30). Consider a walk W in the dual of T 1 that starts with W0, remains in F ,
and visits at least one face of T 1 incident to w. Unfold the faces visited by W in the plane, starting
from W ∗

0 . Let πP (x) be any occurrence of w in the unfolding.

Lemma 33. Up to translating and rotating P , the assignment πP maps each vertex of P to its
position.

Proof of Lemma 33. Consider the maxi-disk (D,φ) of v. Without loss of generality φ agrees with
the embedding of the neighborhood of v that we fixed as a preliminary. Recall from the definition
of the Delaunay tessellation that P is the convex hull of φ−1(V ). Let v⋆ be the middle point of D
(the embedding of v). The points in φ−1(V ) correspond to the incidences between v and the faces
of V around v. Consider such an incidence c, and its corresponding point y ∈ φ−1(V ). Consider
also the face F of V that contains c. The geodesic path p from v⋆ to y projects via φ to a shortest
path φ ◦ p from v to V . And φ ◦ p immediately enters F after leaving v. So the relative interior
of φ ◦ p is included in F , and thus ends at the unique point w ∈ V ∩ F . By slightly perturbing p
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without changing its endpoints we may ensure that φ ◦ p corresponds to a walk in the dual of T 1.
Then y = πP (x) by Lemma 32. This proves the lemma.

Proof of Proposition 12. We must compute the portalgon of the Delaunay tessellation D of (S, V ).
We immediately compute the combinatorics of the portalgon from V, since V is isomorphic to the
dual of D by Lemma 31.

Now, by Lemma 33, all there remains to do is to compute, for each polygon P of the portalgon,
the assignment πP of positions for the vertices of P . Achieving the claimed linear running time
when doing so requires a slight technicality. Consider a face F of V, and the point w ∈ V ∩ F .
Recall that for some faces W0 of T 1 included in F we need to construct a walk W from W0 to w
in the dual of T 1, unfold W , and retain the relative positions of some occurrences of W0 and w in
the unfolding. Doing so independently for every face W0 may take too long as we would visit faces
of T 1 several times. Instead we consider a single spanning tree Y in the dual of T 1 within F , we
unfold the faces of T 1 that are included in F along Y , and we retrieve all the required information
from this unfolding. Note that the choice of Y does not matter, and that the unfolding may overlap.
Doing so for all faces F of V takes linear time.

D.2 Computing the Voronoi diagram

In this section we prove Proposition 11, which we restate for convenience:

Proposition 11. Let T be a portalgon of n triangles, of happiness h. Let V be a set of vertices
of T 1. Assume that V is not empty and contains all singularities of S(T ). We can compute in
O(n2h log(nh)) time a portalgon T ′ of O(n2h) triangles, whose surface is S(T ), and a subgraph V
of T ′1, such that V is the Voronoi diagram of (S(T ), V ).

To prove Proposition 11 we revisit the single source shortest path algorithm described by Löffler,
Ophelders, Silveira, and Staals [20]. In particular we extend their algorithm to multiple sources (we
let the sources be the points in V ). The authors consider a triangulated surface, and compute the
shortest paths emanating from a point x0 on the surface by decomposing the surface according to
how those paths visit the faces of the triangulation. They describe a discrete process that simulates
the propagation of some waves on the surface. Their waves all start from the point x0. In the
setting of Proposition 11, we adapt this strategy to simulate waves on S(T ) that start from all the
points in V , so that the waves meet along the Voronoi diagram V of (S(T ), V ). That simplifies
the algorithm since waves now meet along a graph with geodesic edges (Lemma 30) and do not
go through singularities. We now provide a formalization of this wave algorithm. The continuous
propagation of waves is discretized by a propagation of events. A crucial feature of our formalization
of the algorithm is that it operates on triangles, point sets, and Voronoi diagrams in the plane R2,
never in the surface S(T ). Only the proofs of correctness will argue on the surface S(T ). We will
insist on that.

Recall that the triangles of the input portalgon T lie in the Euclidean plane R2, and they are
disjoint. The reader can think of them as being very far away from each other if this helps the
reading. The data structure maintains, for every triangle ∆ of T , a set X∆ of points in R2. We
insist, again, that all these objects lie in the plane R2, not in the surface S(T ).

We need a definition. Given X ⊂ R2 finite and x ∈ X we denote by Vor(x,X) the closed cell
of x in the Voronoi diagram of X in R2. Formally, Vor(x,X) contains the points y ∈ R2 such that
the distance between x and y is smaller than or equal to the distance between x′ and y for every
x′ ∈ X.
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Central to the wave algorithm is the notion of candidate event that we now define. Consider a
triangle ∆ of T , a side s of ∆, a point x ∈ R2, and some t > 0. The surface S(T ) being closed, there
are a triangle ∆′ of T and a side s′ of ∆′ such that s is matched to s′. Consider the orientation-
preserving isometry of R2 that maps s to s′ and puts ∆ side-by-side with ∆′, apply this isometry to
x, and consider the resulting point x′ ∈ R2. The tuple (t,∆, s, x) is a candidate event if it satisfies
each of the following. First, x /∈ X∆ and x′ ∈ X∆′ . Second, the intersection between Vor(x′, X∆′)
and s′ is not empty, and its distance to x′ is equal to t. In other words, t is equal to the smallest
distance between x′ and a point of Vor(x′, X∆′) ∩ s′. We say that t is the date of the candidate
event (t,∆, s, x).

The data structure additionally maintains a list of the candidate events sorted by date.

Wave algorithm: Initialize for each triangle ∆ of T the set X∆ with the vertices of ∆
that correspond to points in V , if any. Then, as long as possible, consider any candidate event
(t,∆, s, x) of smallest date t, add x to X∆, and repeat. In the end return the sets (X∆)∆.

Again, we insist that the wave algorithm operates in the plane R2. In particular the sets X∆

are subsets of R2. Nevertheless, their Voronoi diagrams are related to the Voronoi diagram of V on
the surface S(T ), and more strongly:

Proposition 13. The wave algorithm terminates after O(n2h) iterations. In the end, for every
triangle ∆ of T , the intersection with ∆ of the Voronoi diagram of X∆ in R2 is the pre-image in ∆
of the Voronoi diagram of V in S(T ).

It is easy to compute the list of the candidate events from the sets (X∆)∆ in polynomial time.
More strongly:

Proposition 14. We can maintain the list of candidate events sorted by date through k insertions
of points in the sets (X∆)∆ in O(k log k) total time.

Proposition 11 is immediate from Proposition 13 and Proposition 14:

Proof of Proposition 11. Proposition 13 and Proposition 14 imply that the wave algorithm can
be performed in O(n2 · h · log(nh)) time. Consider the returned sets (X∆)∆. The sum of the
cardinalities of the sets X∆, summed over all the triangles ∆ of T , is O(n2h) by Proposition 13.
Also, for every triangle ∆, the intersection with ∆ of the Voronoi diagram of X∆ in R2 is the pre-
image in ∆ of the Voronoi diagram of V in S(T ), by Proposition 13. Cutting each triangle ∆ along
the Voronoi diagram of X∆, and cutting the resulting polygons into triangles along vertex-to-vertex
arcs, provides the desired triangular portalgon T ′, along with V.

The rest of this section is dedicated to the proofs of Proposition 13 and Proposition 14.

D.2.1 Proof of Proposition 13

In this section we prove Proposition 13. Recall that the triangles of the portalgon T are realized
dis-jointly in the Euclidean plane R2, and that we think of these triangles as being very far away
from each other, this will help the reading. It is now convenient to introduce a notation for the
projection of this disjoint union of triangles onto the surface S(T ), so we let ρ be this projection.

Given a triangle ∆ of T , we consider the immersed empty disks (D,φ) such that the center of D
belongs to ∆, and such that φ agrees with ρ on D ∩∆. We say that (D,φ) is an immersed empty
disk attached to ∆. We further consider the union of the sets φ−1(V ) over the immersed empty
disks (D,φ) attached to ∆. We call this union the constellation of ∆, and we denote it by V∆.
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We will show that the sets X∆ computed by the wave algorithm are exactly the constellations V∆.
Before that, we have two preliminary lemmas on constellations.

First, the constellations, while lying in the plane R2, are related to the Voronoi diagram of V
in the surface S(T ):

Lemma 34. For every triangle ∆ of T the intersection with ∆ of the Voronoi diagram of the
constellation V∆ is the pre-image in ∆ of the Voronoi diagram of V in S(T ).

The proof of Lemma 34 relies on the following, which will be used again:

Lemma 35. Let (D,φ) be an immersed empty disk attached to a triangle ∆ of T . Then V∆ ∩D =
φ−1(V ). In particular V∆ ∩D = ∅.

Proof. We have V∆ ∩ D ⊇ φ−1(V ) by definition of the constellation V∆. The other inclusion is
immediate from the fact that if two immersed empty disks (D,φ) and (D′, φ′) are attached to ∆

then φ and φ′ agree on D ∩D′. Finally φ−1(V ) ∩D = ∅ by definition of an immersed empty disk
(recall that D is open).

Proof of Lemma 34. Consider a point x ∈ ∆. There is a unique immersed empty disk (D,φ)
attached to ∆ such that the center or D is x, and such that the radius of D is maximum. Then
φ−1(V ) ̸= ∅ since the radius of D is maximum. And φ−1(V ) = V∆∩D by Lemma 35. The geodesic
path(s) between x and the point(s) in φ−1(V ) corresponds via φ to the shortest path(s) between
ρ(x) and V . So ρ(x) belongs to the Voronoi diagram of V in S(T ) if and only if φ−1(V ) contains
several points, equivalently V∆∩D, which is the case if and only if x belongs to the Voronoi diagram
of V∆ in R2.

Second, the cardinalities of the constellations are bounded by the number n of triangles and the
happiness h of the portalgon T :

Lemma 36. For every triangle ∆ of T the constellation V∆ has cardinality O(nh).

Proof. Given a triangle ∆ of T , and a point x in the constellation V∆, there is by definition an
immersed empty disk (D,φ) attached to ∆ such that x ∈ φ−1(V ). And the center y of D belongs
to ∆. Then the geodesic segment between y and x projects via ρ to a path between ρ(y) and ρ(x),
and the length of this path is the smallest possible among all the paths between ρ(y) and a point of
V (possibly another point of V than ρ(x)). We will argue on such shortest paths between a point
of S(T ) and the set V .

We call regions the following subsets of S(T ): a vertex of T 1, the relative interior of an edge
of T 1, and a face of T 1. The regions partition S(T ). For every shortest path p between a point
x ∈ S(T ) and the set V , record the sequence of regions intersected by p when directed from V to
x. If two such paths p and p′ end in ρ(∆) and have the same sequence then they correspond to the
same point in the constellation V∆. We claim that for every region R there are O(nh) sequences
ending with R. This claim implies the lemma. Let us prove the claim. We say that a sequence is
maximal if it is not a strict prefix of another sequence. And we say that a sequence is critical if
it is the maximal common prefix of two distinct maximal sequences. Every critical sequence ends
with a face of T 1. For every face R′ of T 1 there is at most one critical sequence ending with R′.
Indeed every critical sequence is realized by two distinct paths. If two distinct critical sequences
were to end with R′, then at least two of the four associated paths would cross, and thus could be
shortened, a contradiction. We proved that there are O(n) critical sequences. So there are O(n)
maximal sequences. And every sequence contains O(h) occurrences of R since the happiness of T
is equal to h. This proves the claim, and the lemma.
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We will now show that the wave algorithm computes the constellations. To do so, we introduce
an invariant. We need a definition. Fix a point x ∈ V∆, and consider all the immersed empty disks
(D,φ) attached to ∆ such that x ∈ φ−1(V ). Among all these immersed empty disks (D,φ), the
smallest radius of D is the depth of x in V∆.

Invariant: There is τ > 0 such that both of the following hold for every triangle ∆ of T . Every
point of X∆ belongs to the constellation V∆. And every point of V∆ \X∆ has depth greater than
or equal to τ in V∆.

It is not clear a priori that the invariant is maintained by the wave algorithm, and this will be
proved only at the very end, when proving Proposition 13. Before that we need some lemmas.

Lemma 37. Assume that the invariant holds for some τ > 0, and that there is a candidate event
(t,∆, s, x) such that t ≤ τ . Then t = τ , x belongs to V∆, and the depth of x in V∆ is equal to τ .

Proof. We claim that x ∈ V∆, and that the depth of x in V∆ is smaller than or equal to t. The
claim implies the lemma. Indeed we assumed t ≤ τ . And, if x ∈ V∆, then the depth of x in V∆
cannot be smaller than τ , for otherwise the invariant would imply x ∈ X∆, contradicting the fact
that (t,∆, s, x) is a candidate event. All there remains to do is to prove the claim.

To do so consider the triangle ∆′ of T and the side s′ of ∆′ such that s is matched to s′. Consider
the orientation-preserving isometry of R2 that maps s to s′ and puts ∆ side-by-side with ∆′, apply
this isometry to x, and consider the resulting point x′ ∈ R2. Using the assumption that (t,∆, s, x)
is a candidate event, the point x′ belongs to X∆′ , while x does not belong to X∆. Moreover there
is a point z′ along s′ such that x′ is at distance t from z′, and such that no point of X∆′ is closer
to z′ than x′. Consider the immersed empty disk (D′, φ′) attached to ∆′ such that the center of D′

is z′, and such that the radius of D′ is maximum.
By contradiction, assume that the radius of D′ is smaller than t. There is a point v ∈ φ′−1(V )

since the radius of D′ is maximum. We have v ∈ V∆′ , and the depth of v in V∆′ is smaller than or
equal to the radius of D′, which is smaller than τ . So v belongs to X∆′ by the invariant. But then
v is a point of X∆′ closer to z′ than x′, a contradiction.

We proved that the radius of D′ is greater than or equal to t. Then x′ belongs to D. Moreover
x′ belongs to X∆′ , and thus to V∆′ by the invariant. Therefore x′ belongs to φ′−1(V ) by Lemma 35.
In particular the radius of D′ is equal to t.

It is now convenient to name the orientation-preserving isometry of R2 that maps s to s′ and
puts ∆ side-by-side with ∆′, so let λ : R2 → R2 be this isometry. Consider the point z = λ−1(z′),
and the immersed empty disk (D,φ) attached to ∆ such that the center of D is z, and such that
the radius of D is maximum. Observe that λ(D) = D′, and that φ′ ◦λ = φ. In particular the radius
of D is also t. And, crucially, x ∈ φ−1(V ), since we already proved x′ ∈ φ′−1(V ). This proves that
x ∈ V∆. And the depth of x in V∆ is smaller than or equal to the radius of D, which is t. The claim
is proved, along with the lemma.

Lemma 38. Assume that the invariant holds for some τ > 0. Further assume that there is a triangle
∆ of T such that V∆ \X∆ contains a point whose depth in V∆ is τ . Then there is a candidate event
whose date is smaller than or equal to τ .

The proof of Lemma 38 relies on the following:

Lemma 39. Let (D,φ) be an immersed empty disk attached to a triangle ∆ of T . Assume that
there is x ∈ φ−1(V ), and let y be the center of D. If the geodesic segment between x and y intersect
∆ in any other point than y then the depth of x in V∆ is smaller than the radius of D.
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Proof. Assuming that the geodesic segment between x and y intersects ∆ in a point y′ ̸= y (at
least), consider the open disk D′ whose center is y′ and whose boundary circle contains x′. Then
D′ ⊂ D. Let φ′ be the restriction of φ to D′. Then (D′, φ′) is an immersed empty disk, φ′ agrees
with ρ on ∆ ∩D′, and x ∈ φ′−1(V ). So the depth of x in V∆ is smaller than or equal to the radius
of D′, which is smaller than the radius of D.

Proof of Lemma 38. Consider a point x ∈ V∆ \X∆ that has depth τ in V∆. There is an immersed
empty disk (D,φ) that satisfies each of the following. Let y be the center of D. Then y belongs to
∆, the radius of D is τ , φ agrees with ρ on D ∩ ∆, and x ∈ φ−1(V ). In top of that we can add
that y belongs to the boundary of ∆, for otherwise the depth of x in V∆ would be smaller than τ
by Lemma 39, a contradiction. There are two cases: either y lies in the relative interior of a side of
∆, or y is a vertex of ∆.

First case First consider the case where y lies in the relative interior of a side s of ∆. In this case
we shall prove that there is t ≤ τ such that (t,∆, s, x) is a candidate event. The surface S(T ) being
closed, there are a triangle ∆′ of T , and a side s′ of ∆′, such that s is matched to s′. Consider the
orientation-preserving isometry λ : R2 → R2 that maps s to s′ and puts ∆ side-by-side with ∆′. We
consider the points x′ = λ(x) and y′ = λ(y), the open disk D′ = λ(D), and the map φ′ = φ ◦ λ−1.
Observe that (D′, φ′) is an immersed empty disk attached to ∆′, that the center of D′ is y′, and
that x′ belongs to the boundary circle of D′. Informally, x′, y′, and (D′, φ′) correspond to x, y, and
(D,φ), but in the reference frame of ∆′.

We claim that x′ belongs to X∆′ . To prove the claim consider the geodesic line L supported by
s, and direct L so that ∆ is on the right of L. Similarly, consider the geodesic line L′ = λ(L). Then
L′ is supported by s′, and ∆′ is on the left of L′. We have that x lies strictly on the left of L, for
otherwise the depth of x in V∆ would be smaller than τ by Lemma 39, a contradiction. So x′ lies
(strictly) on the left of L′. And so the depth of x′ in V∆′ is smaller than τ by Lemma 39. Therefore
x′ ∈ X∆′ by the invariant. The claim is proved.

We use the claim immediately, x′ belongs to X∆′ . No point of X∆′ is closer to y′ than x′, since
X∆′ ⊆ V∆′ by the invariant, and since D′ ∩ V∆′ = ∅ by Lemma 35. So Vor(x′, X∆′) intersects s′ (at
least in y′), and its intersection with s′ is at distance a distance t ≤ τ from x′ (since the distance
between y′ and x′ is τ). The tuple (t,∆, s, x) is a candidate event. We are done in this case.

Second case. Now consider the case where y is a vertex of ∆. Then ρ(y) is a vertex of the graph
T 1 embedded on S(T ). Note also that ρ(y) lies in the interior of S(T ) since S(T ) has no boundary.
And ρ(y) is flat as it does not belong to V . We assume that no face of T 1 appears twice around y,
for this eases the reading, and the proof trivially extends to the general case. Consider the k ≥ 3
faces of T 1 incident to ρ(y), in order around ρ(y) (clockwise say, but counter-clockwise would do
too), and the corresponding triangles ∆0, . . . ,∆k−1 of T , with ∆0 = ∆. We fix ∆0, and we place
copies of the triangles ∆1, . . . ,∆k−1 around y, in order. This is possibly since ρ(y) is flat. For each
i we record the orientation-preserving isometry λi : R2 → R2 that maps the copy of ∆i around y
to the original triangle ∆i. We consider the points xi = λi(x) and yi = λi(y). Also we consider
the open disk Di = λi(D) and the map φi = φ ◦ λ−1

i . Observe that (Di, φi) is an immersed empty
disk attached to ∆i, that the center of Di is yi, and that xi belongs to the boundary circle of Di.
Informally, xi, yi, and (Di, φi) correspond to x, y, and (D,φ), but in the reference frame of ∆i.

We claim that there is i such that xi ∈ X∆i . Indeed there is i such that the geodesic segment
between y and x intersects the copied triangle λ−1

i (∆i) in another point than y. Then the geodesic
segment between yi and xi intersects ∆i in another point than y. So xi belongs to V∆i and has
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depth smaller than τ in V∆i , by Lemma 39 applied to ∆i, (Di, φi), xi, and yi. And so xi ∈ X∆i by
the invariant. The claim is proved.

Using the claim immediately, and since x0 /∈ X∆0 , there is i such that xi ∈ X∆i and xi+1 /∈
X∆i+1 , indices are modulo k. Consider the side si of ∆i that is matched to a side of ∆i+1. We shall
prove that there is t ≤ τ such that (τ,∆i, si, xi) is a candidate event. To do so first observe that no
point of X∆i is closer to yi than xi since X∆i ⊆ V∆i by the invariant, and since Di ∩ V∆i = ∅ by
Lemma 35. So Vor(xi, X∆i) intersects si (at least in yi), and its intersection with si is at a distance
t ≤ τ from xi (since the distance between yi and xi is τ). The tuple (t,∆i, si, x) is a candidate
event. We are done in this case. The lemma is proved.

Proposition 13. First we prove that the invariant holds throughout the execution of the wave algo-
rithm. To prove the claim first observe that the invariant holds after the initialization phase. Now
assume that it holds at the beginning of an iteration of the loop, for some τ > 0, and that there is a
candidate event (t,∆, s, x), of smallest date t. If every triangle ∆ of T satisfies X∆ = V∆ then the
invariant holds for every τ > 0 anyway. Otherwise there are without loss of generality a triangle ∆
and a point in V∆ \X∆ whose depth in V∆ is τ , so there is a candidate event whose date is smaller
than or equal to τ by Lemma 38. In any case t ≤ τ holds without loss of generality. Then t = τ ,
x belongs to V∆, and the depth of x in V∆ is equal to τ by Lemma 37. So, after adding x to X∆,
the invariant still holds. This proves that the invariant holds throughout the execution of the wave
algorithm.

The wave algorithm never adds twice the same point in a set X∆ of a triangle ∆ of T . Moreover
X∆ ⊆ V∆ by the invariant. And the cardinality of V∆ is O(nh) by Lemma 36. So the wave algorithm
terminates after O(n2h) iterations. The algorithm does not stop until X∆ = V∆ for every triangle
∆ of T , by Lemma 38. And the sets (V∆)∆ are as desired by Lemma 34. The lemma is proved.

D.2.2 Proof of Proposition 14

In this section we prove Proposition 14, that during the wave algorithm the list of the candidate
events sorted by date can be maintained in amortized O(log(nh)) time per insertion of a point in
the set X∆ of a triangle ∆.

The crux of the matter is to maintain the intersection of a Voronoi diagram in R2 with a closed
segment of R2 in a dynamic manner while adding the sources one-by-one to the Voronoi diagram.
To do that we consider a game that we play with Alice. Informally, Alice sends us the sources of
the Voronoi diagram one-by-one, and we tell her what is changed after each insertion of a source.
Formally, Alice initially sends us a closed segment I of R2. Then Alice sends us k ≥ 1 pairwise
distinct points z1, . . . , zk ∈ R2 in this order. We do not know the points before they are sent to us
by Alice, nor the number of points to be sent. For each i ∈ [k], after the i-th point zi is sent to
us by Alice, and before i + 1-th point zi+1 is sent to us, we must send two things to Alice. First,
we must send the set Ui ⊆ [i] containing the index i together with the indices j ∈ [i − 1] such
that Vor(zj , Zi) ∩ I ̸= Vor(zj , Zi−1) ∩ I. Second, for each index j ∈ Ui, we must send the (possibly
empty) set Vor(zj , Zi)∩I. Note that each set Vor(zj , Zi)∩I is a closed segment of R2, so it is either
empty, a single point, or has two distinct endpoints by which it is uniquely determined. We have
two lemmas:

Lemma 40. The sum over 1 ≤ i ≤ k of the cardinality of the set Ui is smaller than or equal to 5k.

Proof. Consider i ∈ [k]. We claim that at most four indices j ∈ Ui are such that Vor(zj , Zi)
intersects I. The claim immediately implies the lemma.

To prove the claim we consider the subset Y of I that contains the points that are strictly closer
to zi than to any point of Zi−1. And we consider the closure X of Y . Then X is a closed segment
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of R2 and, assuming that Ui is not empty, we have that Y is not empty, so X is not empty, and X
is not a single point either. Informally, we now consider the two “ends” of X. Formally, we consider
the two endpoints x0 and x1 of X, and for each ε ∈ {0, 1}, we consider an arbitrarily short closed
segment Xε ⊂ X, not a single point, that contains xε. Provided Xε is short enough, there are no
more than two indices j ∈ Ui such that the relative interior of Xε is included in Vor(zj , Zi−1) .

On the other hand if j ∈ Ui is such that Vor(zj , Zi) intersects I, then not only Vor(zj , Zi−1)
also intersects I, but Vor(zj , Zi−1) ∩ I contains a point in Y and a point not in Y , so it contains
the relative interior of Xε for some ε ∈ {0, 1}. This proves the claim, and the lemma.

Lemma 41. There is an algorithm that receives I and z1, . . . , zk in this order, and that, after
receiving zi, i ∈ [k], returns Ui together with the closed segments Vor(zj , Zi) ∩ I for all j ∈ Ui, and
runs in O(k log k) total time.

Proof. Consider i ∈ [k], and assume that the point zi has just been sent by Alice. We must return to
Alice. The crux of the matter is to have maintained at this point the list of tuples (j,Vor(zj , Zi−1)∩I)
over j ∈ [i − 1], ordered by the position of Vor(zj , Zi−1) ∩ I along I (for some direction of I, and
resolving any ambiguity arbitrarily). Now we can use the list to answer Alice, and update the list,
as follows. Given a tuple (j,Vor(zj , Zi−1)∩ I) we can determine in constant time whether j ∈ Ui by
checking whether there is a point of Vor(j, Zi−1)∩ I that is strictly closer to zi than to zj . If j /∈ Ui,
then either all the tuples (j′,Vor(zj′ , Zi−1)∩ I) before (j,Vor(zj , Zi−1)∩ I) in the list are such that
j′ /∈ Ui, or all the tuples after (j,Vor(zj , Zi−1) ∩ I) are like that, and we can find out which case it
is in constant time. So we can list by dichotomy the k′ ≥ 0 tuples (j,Vor(zj , Zi−1) ∩ I) such that
j ∈ Ui in O(k′ + log k) time. For each such tuple (j,Vor(zj , Zi−1) ∩ I), we derive Vor(zj , Zi) ∩ I
from Vor(zj , Zi−1), zj , and zi in constant time. In the end we compute Vor(zi, Zi) ∩ I in O(log k)
time by finding by dichotomy the first and last tuples (j,Vor(zj , Zi−1) such that Vor(zj , Zi−1) ∩ I
contains a point that is at least as close to zi than to zj , if any. This way we can return to Alice,
and update the list of tuples, in O(k′ + log k) total time. Lemma 40 concludes.

In the following, when maintaining the list of candidate events, we also maintain appropriate
search trees in which we store the candidate events, so that the candidate events can be accessed
by date or position in logarithmic time.

Proof of Proposition 14. When inserting a point x in the set X∆ of a triangle ∆, we maintain the
list of candidate events sorted by date as follows. First, we find the candidate events of the form
(·,∆, ·, x), and we remove these candidate events from the list. All but O(log k) of the time spent
here is amortized by the fact that every event deleted here was created earlier in the execution of
the algorithm.

Second, for every side s of ∆, we consider the triangle ∆′ and the side s′ of ∆′ such that s is
matched to s, along with the orientation-preserving isometry λ : R2 → R2 that maps s to s′ and puts
λ(∆) and ∆′ side by side. Among the candidate events of the form (·,∆′, s′, λ(y)), y ∈ X∆, those
for which Vor(y,X∆ ∪{x})∩ s ̸= Vor(y,X∆)∩ s may have to updated. If Vor(y,X∆ ∪{x})∩ s = ∅,
then the event must be deleted. Otherwise, only the date of the event may change. This is done in
amortized O(log k) time using Lemma 41.

Finally, Lemma 41 also provides us with the set Vor(x,X∆ ∪ {x}) ∩ s. If this set is not empty,
and if λ(x) /∈ X∆′ , then we consider the distance t between x and Vor(x,X∆ ∪ {x}) ∩ s, and we
create the event (t, s′,∆′, λ(x)), in O(log k) time.
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E Appendix: proof of Lemma 24

In this section we prove Lemma 24, which we restate for convenience:

Lemma 24. Let c ∈ (0, 1). There is no real RAM program computing ⌊x⌋ from x ∈ (1,∞) in
O((log x)c) time.

As already mentioned, a result similar to Lemma 24 was proved by Blum, Shub, and Smale [3,
Section 4, Proposition 3] on a different machine, excluding the square root operation. We adapt
their arguments to the machine described by Erickson, van der Hoog, and Miltzow [12], including
the square root operation. This requires a few additional arguments.

As a preliminary, note that the real number operations available to the machine have domains
of definition. Indeed, dividing by zero is undefined. Moreover, it is convenient for us to define the
square root operation on (0,∞), thus excluding 0. This way square root is real analytic on its
domain, and more generally all real number operations available to the machine are real analytic
on their domain, so their combinations too, a fact we will use in our proof. Having the square root
of 0 undefined does not change the computational power of the machine anyway.

Informally, the core of the proof consists in separating the complexity of a computation induced
by the flow control instructions from the complexity induced by the operations on real numbers.
So first, we consider a program in which there is no flow control instruction, in other words which
instructions are executed does not depend on the input. We formalize that with a simper model of
computation. A straight-line program is a sequence of n ≥ 1 instructions I1, . . . , In where for
each i ∈ [n] the instruction Ii is either xi ← c for some constant c ∈ R, xi ← xj ⊕ xk for some
j, k ∈ {0, . . . , i−1} and ⊕ ∈ {+,−,×, /}, or xi ←

√
xj . We compute in the natural way. The input

is the initial value of the variable x0. For each i ∈ [n] the instruction Ii computes the value of the
variable xi, and the output is the value of xn computed by the last instruction In. The computation
fails if at some point we divide by zero, or if we take the square root of a non-positive number. This
defines a function f : D ⊂ R → R, where D contains the input values for which the computation
does not fail, and where f maps each input value to the corresponding output value. We say that
f is the function associated to to the straight-line program.

The key argument is to show that the function associated to a straight-line program is “nice”.
Formally, given y ∈ R, we say that f flattens at y if there is an open set O ⊂ R such that O ⊆ D
and f(O) = {y}. Then:

Lemma 42. If f : D ⊂ R→ R is associated to some straight-line program with n instructions then
f flattens at less than (7n)3n values.

Note that without the square root operation, every function associated to a straight-line program
would be rational, so it would flatten at at most one value. When including the square root operation
however, such functions can flatten at several values: consider, for example, the function that maps
each x ∈ R \ {0} to

√
x2/x. This is why we need extra arguments compared to Blum, Shub, and

Smale [3, Section 4, Proposition 3].

Proof of Lemma 42. The function f is real analytic. Therefore if f is constant on some open set
O ⊂ R included in D, then f is constant on the entire connected component of D that contains O.
We will now prove that D has less than (7n)3n connected components. This will prove the lemma.

By assumption f is associated to a straight-line program I1, . . . , In. For each i ∈ [n] we associate
to the instruction Ii some polynomial equation(s). For example each instruction of the form xi ←
xj×xk is associated to the single equation xi−xjxk = 0. And each instruction of the form xi ←

√
xj

is associated to the three equations x2i − xj = 0, xi > 0, and xj > 0. The other instructions are
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handled the same way. This defines at most 3n polynomial equations, each of degree at most two.
The corresponding semi-algebraic subset X ⊂ Rn+1 contains the possible values of the variables
(x0, . . . , xn) during an execution of the straight-line program. By definition the first co-coordinate
projection maps X to D in a one-to-one manner, and this projection is continuous, so the number
of connected components of D is smaller than or equal to the number of connected components of
X. And the latter is smaller than (7n)3n by a result of Milnor [21, Theorem 3].

Proof of Lemma 24. We consider a program P that satisfies each of the following for every x ∈
(1,∞). Initialize all word and real registers with 0, except the first real register initialized with x,
and run the machine with program P . Then P is such that 1) the machine never tries to perform
an undefined operation (dividing by zero, or taking the square root of a non-positive number), 2)
at some point the machine halts, and 3) afterward the first real register contains the value ⌊x⌋.
Assume by contradiction that there are c ∈ (0, 1) and n ∈ N such that n > 1, and such that for
every x ≥ n, when executed with program P on input x, the machine halts after at most (log x)c

instructions. We will derive a contradiction, which will prove the lemma.
Consider an integer m ≥ n + 1. By assumption, when executed with program P on some

input x ∈ [n,m], the machine halts after at most α = (logm)c instructions. Which instructions
are executed depends on x, and more precisely on the outcomes of the flow control instructions.
Since at most α flow control instructions are executed, there are at most 2α possibilities for the
outcomes of the flow control instructions. For each such possibility, the output (value of the first real
register once the machine halts) is a function of the input (initial value of the first real register) that
is associated to a straight-line program with at most α instructions. In particular, this function
flattens at less than (7α)3α values by Lemma 42, we will use this fact. Let F contain all these
functions, over all the possibilities for the outcomes of the flow control instructions. Now consider
an integer k ∈ [n,m− 1]. There is a non-empty open subset Ok of the open interval (k, k+ 1) such
that the outcomes of the flow control instructions are the same for all inputs in Ok. So there is
fk ∈ F , whose domain contains Ok, such that fk(Ok) = {k}. In other words, fk flattens at k. Now
recall that each fk flattens at less than (7α)3α values, so (m − n) ≤ 2α · (7α)3α. As m goes to ∞
this inequality becomes false, since α = (logm)c and c < 1, a contradiction.
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