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Abstract1

A surface can be defined without reference to R3 from a portalgon, a collection of plane polygons2

(fragments) whose sides are partially matched, as described recently by Löffler, Ophelders, Staals,3

and Silveira (SoCG’23). The computation of shortest paths on a surface is affected by the maximum4

number of times they visit the image of a fragment, the happiness of the portalgon, which is5

unbounded, in stark contrast to polyhedral meshes in R3. While it is known that every surface6

admits portalgons of bounded happiness, efficiently computing one is open.7

In this paper we introduce the canonical portalgon of a (closed) surface (obtained essentially8

by cutting the surface along the Delaunay tessellation of the points of non-zero curvature), and we9

provide an algorithm to compute it from any other (triangulated) portalgon of the surface (polynomial10

in the number of fragments, and in the logarithm of the maximum aspect ratio of the fragments).11

This portalgon (after triangulating fragments for degenerate inputs) has bounded happiness by a12

result of Löffler, Ophelders, Staals, and Silveira. This implies algorithms to pre-process a portalgon13

before computing shortest paths on its surface, and to determine if the surfaces of two portalgons14

are isometric.15
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1 Introduction16

In one of its simplest forms a surface is a point set equipped with a distance function,17

or metric. Surfaces are often obtained from polyhedral meshes, straight polygons in R3
18

glued along their edges. The (intrinsic) distance between two points of the mesh is the19

length of a shortest path between them along the mesh. A surface can also be defined20

without reference to R3 from a portalgon, a collection of plane polygons (fragments) with21

matched sides. This very simple model is more general than polyhedral meshes. Recently22

Löffler, Ophelders, Staals, and Silveira [12] (see also [18]) proposed to unify the problems of23

polyhedral meshes that can be expressed without reference to R3 (are intrinsic) within the24

framework of portalgons.25

Not all portalgons are suitable for computation. Prominently, shortest path algorithms26

are affected by the happiness of the portalgon, the maximum number of times the shortest27

paths of its surface visit the image of a fragment, which is unbounded (a fact noted almost 2028

years ago in a popular blog post by Erickson [6]), in stark contrast with polyhedral meshes29

(whose edges are shortest paths in their surface). While every surface admits portalgons of30

bounded happiness, efficiently computing one is open.31

The contribution of this paper is threefold. First we introduce the canonical portalgon of32

a (closed) surface (obtained essentially by cutting the surface along the Delaunay tessellation33

of the points of non-zero curvature). This portalgon (after triangulating fragments for34

degenerate inputs) has bounded happiness by a result of [12]. Second and most importantly,35

we provide an efficient algorithm to compute the canonical portalgon from any other portalgon36

of the surface. Last but not least, our algorithm directly applies to pre-process a portalgon37

before computing shortest paths on its surface, and to determine if the surfaces of two38

portalgons are isometric.39

Before describing our results in more detail, we survey related works.40
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23:2 Computing the Canonical Portalgon

1.1 Related works41

Some shortest path algorithms operate in the plane [14, 8, 20]. Other algorithms are designed42

specifically for polyhedral meshes. Mitchel, Mount, and Papadimitriou [15] compute single-43

source shortest paths, and Mount [16] computes a Voronoi diagram of the input surface44

S, a decomposition of the points of S according to which source(s) they are closer to (see45

also [3, 10, 11]). Both algorithms run in time polynomial in the number of sources and in46

the number of edges of the mesh. Roughly, they propagate waves along the surface, starting47

from the source(s).48

Löffler, Ophelders, Staals, and Silveira adapt the single-source shortest paths algorithm [12,49

Section 3] to portalgons, whose running time now depends on the happiness of h the portalgon.50

They prove that cutting a surface along a Delaunay triangulation would provide a portalgon51

of bounded happiness [12, Section 4], but observe that no efficient algorithm is known to52

compute them. They compute portalgons of bounded happiness [12, Section 5], but only for53

a restricted class of inputs whose surfaces are all homeomorphic to an annulus.54

For comparing surfaces the only algorithms we are aware of are heuristic [2, 5, 13, 17].55

1.2 Our results56

1.2.1 Main result57

It is classical (and detailed in Appendix G) that if a closed surface S is not flat, then the58

Voronoi diagram of the points of non-zero curvature is dual to a Delaunay tessellation D of S59

(here the 1-skeleton of the Voronoi diagram is the set of points whose distance to the sources60

is realized by several shortest paths; in particular the open Voronoi cells are homeomorphic61

to disks). We define the canonical portalgon of S as the one obtained by cutting S open62

along D. If S is flat, and thus homeomorphic to a torus by the Gauss-Bonnet formula, we63

consider the Voronoi diagram of a single arbitrary source, as the resulting portalgon does64

not depend on the source by symmetry of S.65

A portalgon P is triangular if all its fragments are triangles. The global aspect ratio of66

P is then the greatest side length of a fragment of P divided by the smallest height of a67

fragment of P . Our main result is that if the surface S(P ) of P is closed, then the canonical68

portalgon of S(P ) can be computed from P in time polynomial in the number n of fragments69

of P and in the logarithm of the global aspect ratio of P :70

▶ Theorem 1. Let P be a triangular portalgon, with n fragments, of global aspect ratio71

r, whose surface S(P ) is closed. One can compute the canonical portalgon of S(P ) in72

O∗(n3 log4 r) time.73

Here and in the rest of the paper O∗() stands for for domination up to a poly-logarithmic74

factor. Also log(·) denotes log2(⌈·⌉) + 1. We analyze all our results in the real RAM model75

of computation. Let us mention that all our algorithms remain polynomial in the number76

of fragments and in the logarithm of the aspect ratio when measured in terms of the local77

aspect ratio of the input portalgon P , the maximum aspect ratio of its fragments, where the78

aspect ratio of a fragment is its maximum side length divided by its smallest height. Indeed79

global and local aspect ratios are related by the following, proved in Appendix A:80

▶ Lemma 2. Let P be a triangular portalgon, with n fragments, whose global and local aspect81

ratios are respectively r and r′, whose surface S(P ) is connected. Then r′ ≤ r ≤ (r′)n.82

The aspect ratios of a triangular portalgon P are natural parameters that can be read off83

from P . On the other hand there is no known algorithm to compute the happiness of P .84
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1.2.2 Applications85

We now mention two immediate but important consequences of our Theorem 1. First, by a86

result of [12, Section 4], cutting the fragments of our canonical portalgon into triangles along87

arcs provides a portalgon of bounded happiness. Combined with Theorem 1 this gives the88

following, proved in Appendix A:89

▶ Corollary 3. Let P be a triangular portalgon, with n fragments, of global aspect ratio r,90

whose surface S(P ) is closed. One can compute in O∗(n3 log4 r) time a triangular portalgon91

P ′ of S(P ) that has O(n) fragments and bounded happiness.92

On the output portalgon P ′ the single-source shortest path algorithm of [12, Section 3]93

would run in time O∗(n2). Second, one can determine if two surfaces are isometric by testing94

if they have the same canonical portalgon (with a labeled combinatorial map isomorphism95

test). This gives the following, proved in Appendix A:96

▶ Corollary 4. Let P and P ′ be triangular portalgons, with at most n fragments, of global97

aspect ratios smaller than or equal to r, whose surfaces S(P ) and S(P ′) are closed. One can98

determine if S(P ) and S(P ′) are isometric in O∗(n3 log4 r) time.99

1.3 Overview and techniques for the proof of Theorem 1100

On the surface S(P ) of a portalgon P , we consider the graph C(P ) traced by the sides101

of the fragments of P . Every edge e of C(P ) is a segment of S(P ), a geodesic relatively102

disjoint from the curved points. Adapting the notion of happiness to our needs, we define103

the segment-happiness of e as the maximum number of times it is visited by a shortest path.104

The maximum segment-happiness of the edges of C(P ) then defines the segment-happiness105

of P . On triangular portalgons, happiness and segment-happiness are equivalent up to a106

constant factor.107

To prove Theorem 1 we first consider portalgons P whose surface S(P ) is simply connected108

and has no positively curved point in its interior. Indeed the Gauss-Bonnet formula implies109

that every segment of S(P ) is the unique geodesic between its two endpoints, and thus the110

unique shortest path, so no shortest path crosses it twice. In trying to leverage this key111

property, we consider a wider class of surfaces by dispensing ourself from the constraint on112

topology, but keeping the constraint on curvature. More precisely we consider (connected)113

surfaces S(P ) that are not simply connected and have no positively curved point in their114

interior. The systole of S(P ) is the smallest length of a non-contractible geodesic closed115

curve in S(P ). Our key technical result toward the proof of Theorem 1 is:116

▶ Proposition 5. Let P be a triangular portalgon with n fragments, of maximum fragment117

edge length L. Assume that the surface S(P ) of P is connected, is not simply connected,118

and has no positively curved point in its interior. Let s > 0 be at most the systole of119

S(P ). One can compute in O(n log2(n) log2(L/s)) time a triangular portalgon of S(P ) with120

O(n log(L/s)) fragments, and of segment-happiness O(log(n) log2(L/s)).121

Note that in Proposition 5 the surface S(P ) may have boundary, in which case the122

algorithm maintains the correspondence between the boundary components of the input123

and those of the output. The algorithm for Proposition 5 uses four elementary operations124

on the portalgon P that we describe in Section 3. As a tool to analyze the algorithm we125

introduce in Section 4 a new parameter on the segments of S(P ), the enclosure, possibly of126

independent interest, that dominates segment-happiness well enough to our needs. In the127

same section we show what the elementary operations do to the enclosure and the length128
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23:4 Computing the Canonical Portalgon

of the edges of C(P ). In Section 5 we finally describe and analyze the algorithm proving129

Proposition 5. Essentially, we produce a triangulation of S(P ) decomposed into a central130

region whose edges have low enclosure, and into a set of tubular regions whose edges may131

have high enclosure but have low segment-happiness anyway.132

At the end of Section 5 we extend Proposition 5 to surfaces having positively curved133

points, essentially by cutting out caps around those points. Also we deduce the canonical134

portalgon from the Voronoi diagram of its vertices, that we obtain by adapting the shortest135

path algorithm of [12, Section 3]. Immediately, we deduce Theorem 1.136

2 Preliminaries137

We assume basic knowledge of topology of surfaces and covering spaces; see, e.g., Stillwell [19].138

2.1 Portalgons, surfaces, and isometry139

Let X be a set. A metric on X is a map d : X2 → R, that is symmetric, positive on distinct140

elements, null on equal elements, and satisfies the triangular inequality. Then (X, d) is a141

metric space. An isometry is a one-to-one correspondence f : X → X ′ between two metric142

spaces (X, d) and (X ′, d′) such that d(x, y) = d′(f(x), f(y)) for every x, y ∈ X. Two metric143

spaces are isometric if there exists an isometry between them.144

We call polygon any finite cycle Q embedded in the Euclidean plane by straight line145

segments. Two polygons are considered equal if one can be obtained from the other by146

translations and rotations. The compact region of the plane bounded by Q is a metric space,147

the surface of Q. A portalgon P is a set of polygons, the fragments of P , along with a148

partial matching of the fragment edges, such that every two matched edges have the same149

length. Every subset of the fragments of P induces a sub-portalgon P ′ of P , where two150

fragment edges are matched in P ′ if and only if they are matched in P . A triangle is a151

polygon with three vertices. A portalgon is triangular if all its fragments are triangles.152

Given a portalgon P , realize the surfaces of the fragments of P disjointly. In their union153

identify every two matched edges with an orientation-preserving isometry. The result is154

a metric space S(P ), the surface of P . The distance between two points of S(P ) is the155

smallest length of a path between them in S(P ), where the length of a path is measured in156

the fragments of P . Note that S(P ) is orientable, and may have boundary. More generally157

we call surface any metric space S isometric to the surface of a portalgon. And when we158

say that P is a portalgon of S, we identify S(P ) and S with an isometry. The sides of159

the fragments of P map to a graph C(P ) in S(P ), the carrier of P . A face of C(P ) is a160

connected component of S(P ) \ C(P ). If P is triangular then C(P ) is a triangulation.161

2.2 Curvature and geodesics162

In a surface S a point x is flat if there is a neighborhood of x isometric to a plane metric163

disk, or half-disk, otherwise x is curved. If P is a portalgon of S, then every curved point x164

of S is a vertex of C(P ). The sum a of the angles of the corners of faces of C(P ) around x165

does not depend on P . If x lies in the interior of S then either a < 2π or a > 2π, and we say166

that x is positively or negatively curved respectively.167

In this paper we denote by ℓ(p) the length of a path p. A geodesic is a path p in S168

whose relative interior is locally straight outside of the curved points of S, and does the169

following at each curved point x of S. If x lies in the interior of S, then p forms at x an170

angle greater than or equal to π on both sides (then x is negatively curved). Otherwise p171
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forms an angle greater than or equal to π on the side that does not contain the boundary172

of S. Equivalently, geodesics are paths that are locally shortest. A segment is a geodesic173

relatively disjoint from the curved points of S.174

We now focus on a surface S that has no positively curved point in its interior. The175

Gauss-Bonnet formula, applied to the universal covering space of S, implies that for every176

path p in S there is a unique geodesic path p′ homotopic to p in S, and ℓ(p′) ≤ ℓ(p). If177

moreover S is not simply connected, then the systole of S is the smallest length of a178

non-contractible geodesic closed curve in S (note that this definition of takes into account179

the curves homotopic to a boundary component of S). Importantly, every segment shorter180

than half the systole of S is then the unique shortest path between its endpoints.181

2.3 Happiness182

Let S be a surface. Löffler, Ophelders, Staals, and Silveira [12] define the happiness of a183

portalgon P of S as the maximum number of times a shortest path on S visits the image of a184

single fragment of P . Adapting this notion to our needs, we define the segment-happiness185

hS(e) of a segment e of S as the maximum number of intersections between e and a shortest186

path of S. The segment-happiness of P is then the maximum hS(e) over the edges e of187

C(P ). If P is triangular then its happiness and segment-happiness are equivalent up to a188

constant factor, and segment-happiness suits better the analysis of our algorithms.189

2.4 Tubes and bifaces190

Figure 1 (From left to right) A good biface, a biface not good, a thin biface, a thick biface.191

In this section we focus on a particular class of partalgons, similarly to [12, Section 5].192

See Figure 1. A tube is a triangular portalgon X whose surface S(X) is homeomorphic193

to an annulus, has no curved point in its interior, and such that C(X) has one vertex per194

boundary component of S(X). A biface is a triangular portalgon B with two fragments195

whose respective edges e0, e1, e2 and e′
0, e

′
1, e

′
2, in order, are such that e0 is matched with196

e′
0 and e1 is matched with e′

1. Then C(B) has four edges, two loop edges forming the two197

boundary components of S(B), that we call boundary edges, and two interior edges198

relatively included in the interior of S(B). We say that B is good if the two interior edges199
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e and f of C(B) are such that e is a shortest path in S(B), and f is a shortest arc of the200

(possibly non-convex) quadrilateron obtained by cutting S(B) along e. While tubes and201

bifaces have unbounded happiness, good bifaces on the other hand are designed to satisfy202

the following, whose straightforward proof is detailed in Appendix B:203

▶ Lemma 6. If e is an interior edge of a good biface B, then hS(B)(e) < 7.204

We will distinguish good bifaces by saying that a good biface B is thin if every interior205

edge of C(B) is longer than every boundary edge of C(B), and that B is thick otherwise.206

3 The elementary operations207

In this section we describe, on a portalgon P , the four elementary operations that will be208

used by the algorithm of Proposition 5. See Figure 2.209

Figure 2 The four elementary operations used by the algorithm of Proposition 5.210

1 Inserting a vertex in an edge. Given an edge e of C(P ), one can insert a point in the211

relative interior of e as a vertex in C(P ) by inserting a vertex in each fragment edge of P212

corresponding to e.213

2 Inserting an arc in a face. Consider a face F of C(P ). An arc a of F is a geodesic path214

in S(P ) whose relative interior is included in F and whose end-points are vertices of C(P ).215

One can insert a as an edge in C(P ) by cutting the fragment of P corresponding to F in two.216

3 Deleting a vertex. Assume that C(P ) is a triangulation (equivalently, that P is triangular),217

and consider a vertex v of C(P ) that lies in the interior of S(P ), is flat, and is not incident to218

any loop edge in C(P ). (In particular v does not occur twice in a fragment of P .) One can219
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delete v and its incident edges from C(P ) by merging the fragments of P in which v occurs220

into a single fragment. Note that then C(P ) is not a triangulation anymore.221

4 Replacing a tube by a good biface. Given a sub-portalgon X of P (Section 2.1), if X is222

a tube (Section 2.4), then we consider the elementary operation of replacing X by a good223

biface in P . In [12, Theorem 45] (building upon a ray shooting algorithm of [7]) they provide224

an algorithm to transform a biface into a triangular portalgon with bounded number of225

fragments and bounded happiness. While this algorithm extends from bifaces to triangular226

portalgons X such that the dual graph of C(X) in S(X) has at most one simple cycle, it does227

not immediately extend to tubes. In Appendix C we use their result to prove the following:228

▶ Lemma 7. Let X be a tube with n fragments, of maximum fragment edge length L. Let229

s > 0 be at most the systole of S(X). One can compute in O(n log(n) log(L/s)) time a good230

biface of S(X).231

In a nutshell, the algorithm of Lemma 7 greedily deletes vertices of C(X), and inserts232

arcs in the resulting faces to make C(X) a triangulation again, until every vertex of C(X)233

is incident to a loop edge, at which point X is a concatenation of bifaces. Then it replaces234

every biface by a good biface using [12, Theorem 45]. Finally it repeatedly merges pairs of235

adjacent good bifaces into a single good biface.236

4 Enclosure237

In this section we fix a surface of the kind of the input of Proposition 5. More precisely a238

compact surface S, connected, not simply connected, such that the interior of S does not239

contain any positively curved point. We introduce a parameter on the segments of S that240

we call enclosure. Then we relate enclosure to segment-happiness and length, and we show241

what the elementary operations of Section 3 do to the enclosure and the length of the edges242

involved, preparing the analysis of the algorithm of Proposition 5 in Section 5.243

Figure 3 The red loop encloses the blue segment in the surface.244

First we define enclosure. See Figure 3. Let e be a segment in S. If x is a point in the245

relative interior of e then ⟨x⟩e denotes the minimum length of the two sub-segments of e246

separated by x. Let γ be a loop based at x in S, geodesic except possibly at its basepoint.247

Assume that ℓ(γ) < ⟨x⟩e. Then γ is in general position with e (γ and e do not overlap). If248

moreover γ meets x on both sides of e (so that in particular e is not included in the boundary249

of S), then we say that γ encloses e in S. Also we say that γ encloses e by a factor of250

⟨x⟩e/ℓ(γ) in S. The enclosure cS(e) is the supremum of the ratios ⟨x⟩e/ℓ(γ) over the loops251

γ enclosing e in S, conventionally set to one if there is no loop enclosing e in S.252
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We will use the following propositions about enclosure, all proved in Appendix D. The253

following relates enclosure to segment-happiness and length:254

▶ Proposition 8. Let e be a segment of S. Let s > 0 be at most the systole of S. Assume that255

there exists a triangular portalgon of S with n fragments, and of maximum fragment edge length256

L. Then hS(e) ≤ 600·cS(e)·(log(cS(e))+log(n)+log(L/s)) and ℓ(e)/s ≤ 600·cS(e)·n·⌈L/s⌉2.257

Given a portalgon P of S, we may insert a point in the relative interior of an edge of C(P )258

as a vertex in C(P ), with the elementary operation 1 (Section 3). The following enforces that259

the two resulting edges are not more enclosed in S than the initial edge. It is straightforward:260

▶ Lemma 9. Let e be a segment in S, and let f be a sub-segment of e. Then cS(e) ≥ cS(f).261

Consider a face F of C(P ). Among all the arcs of F consider the shortest one(s). We262

may insert such a shortest arc of F as an edge in C(P ) with the elementary operation 2263

(Section 3). The following enforces that if the arc inserted is«very enclosed»in S, then it264

is«not much more enclosed»in S and«not much longer»than the edges initially in C(P ):265

▶ Proposition 10. Let F be a face of the carrier of a portalgon of S. Assume that F has a266

shortest arc e such that cS(e) > 6. Then F has a boundary edge f such that cS(f) ≥ cS(e)−4267

and ℓ(f) ≥ (1 − 4/cS(e))ℓ(e).268

We may replace a sub-portalgon of P by a good biface B with the elementary operation 4269

(Section 3). The following enforces that if B is thick, and if an interior edge of C(B) is«very270

enclosed»in S, then it is«not much more enclosed»in S and«not much longer»than the edges271

initially in C(P ), similarly to Proposition 10:272

▶ Proposition 11. Assume that a portalgon of S admits a thick biface B as a sub-portalgon,273

and let e be one of the two interior edges of C(B). Assume that cS(e) > 6. Then there is a274

boundary edge f of C(B) such that cS(f) ≥ cS(e) − 5 and ℓ(f) ≥ (1 − 4/cS(e))ℓ(e).275

We will keep the thin bifaces encountered in the output portalgon. The following enforces276

that their boundary edges are«not very enclosed»in S:277

▶ Proposition 12. Assume that a portalgon of S admits a thin biface B as a sub-portalgon,278

and let e be a boundary edge of C(B). Then cS(e) ≤ 2.279

5 Computing happier portalgons on non-positively curved surfaces280

In this section we prove Proposition 5 with an algorithm that uses the elementary operations281

of Section 3, that we analyze with the properties of Section 4. First we describe the algorithm282

in Section 5.1. We proceed with the analysis in the other sections, and we finally prove283

Proposition 5 in Section 5.5.284

As in Proposition 5 we fix an input triangular portalgon P with n fragments, of maximum285

fragment edge length L, whose surface S := S(P ) is connected, is not simply connected, and286

has no positively curved point in its interior. We let s > 0 be at most the systole of S.287

5.1 Algorithm288

The data structure maintains a portalgon R of S, and the following decomposition of R.289

See Figure 4. The fragments of R are partitioned into a sub-portalgon RA of R, the active290

region (the surface of RA may be disconnected), and into other sub-portalgons of R, the291



Anonymous author(s) 23:9

inactive regions. The first invariant maintained by the algorithm is that every inactive292

region is a good biface.293

The pairs of fragment edges that lie in different regions and are matched in R form a set294

of edges in the interior of S, all loops by the first invariant, that we call inactive loops (some295

inactive loops may not be incident to the surface of RA). The second invariant maintained296

by the algorithm is that the inactive loops are pairwise-disjoint (equivalently, no two of them297

are based at the same vertex).298

Figure 4 The data-structure of Section 5: a portalgon R decomposed into an active region RA

(in blue) and some inactive regions (in red).
299

300

The algorithm calls three routines that we detail below. It involves a positive integer301

constant κ, and is correct whenever κ ≥ 326, as we shall see. Yet we leave κ as an302

indeterminate for now in order to clarify the analysis. The algorithm is the following:303

Initialize the active region RA as the input portalgon P (without any inactive region).304

Repeat log(L/s) times the following:305

Apply SUBDIVISION.306

Repeat κ times the following: apply TUBING then DELETION.307

Importantly RA is triangular in-between routines, but usually not inside a routine.308

SUBDIVISION. Consider every edge e of C(RA) that is not included in the boundary of309

S(RA), and insert the middle point of e as a vertex in C(RA). Then insert shortest arcs in310

the faces of C(RA), in any order, as long as possible, making C(RA) a triangulation again.311

DELETION. Consider the vertices of C(RA) that lie in the interior of S(RA), are flat, have312

degree smaller than or equal to six, and are not incident to any loop edge. Delete a maximal313

(though not necessarily maximum) independent set of such vertices from C(RA). Then insert314

shortest arcs in the resulting faces of C(RA), in any order, as long as possible, making C(RA)315

a triangulation again.316

TUBING. This last routine is slightly more technical, and is in three steps:317

1. Consider every connected component of S(RA) whose corresponding sub-portalgon X of318

RA is a tube. Replace X by a good biface B. Remove B from RA.319

2. Build a set J of loop edges of C(RA) that lie in the interior of S(RA) and are pairwise-320

disjoint, as follows. There are two cases:321
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a. If S(RA) is a flat torus (and thus RA = R, since S is connected), do the following. Let322

J contain two disjoint loop edges of C(RA) if there are any, otherwise let J = ∅.323

b. Otherwise, if S(RA) is not a flat torus, do the following. First construct a set J ′ of324

loop edges by considering every vertex v of C(RA) that lies in the interior of S(RA)325

and is incident to a loop edge, and by putting one (and only one) of the loop edges326

incident to v in J ′. Then build J ⊆ J ′ by removing from J ′ every e ∈ J ′ that327

satisfies each of the following: the vertex of e is flat, there are two distinct connected328

components of S(RA) \ J ′ adjacent to e, say S0 and S1, and the two sub-portalgons of329

RA corresponding to S0 and S1 are both tubes.330

3. Consider every connected component of S(RA) \ J whose corresponding sub-portalgon X331

of RA is a tube. Replace X by a good biface B. If B is thin remove B from RA.332

The idea behind step 2 is to remove loops from J so that step 3 simplifies a concatenation333

of tubes into a single good biface when possible, instead of simplifying the tubes separately334

into several good bifaces.335

5.2 The inactive loops are not very enclosed336

We now begin the analysis of the algorithm. First we prove that at any time during the337

execution the inactive loops are«not very enclosed»in S:338

▶ Lemma 13. At any time during the execution of the algorithm, every inactive loop e339

satisfies cS(e) ≤ 2.340

Proof. Only the third step of TUBING may create an inactive loop, by removing a thin341

biface B from RA. Then the routines cannot modify B. So the algorithm maintains the342

invariant that every inactive loop e is adjacent to the surface of at least one inactive region343

that is a thin biface, and thus that cS(e) ≤ 2 by Proposition 12. ◀344

5.3 The geometry of the active region is simplified345

In this section we show that running the algorithm simplifies the geometry of the active region346

RA. More precisely the maximum length of the edges of C(RA) that are«very enclosed»in347

S (if any) scales down exponentially. Recall that L denotes the maximum fragment edge348

length of the input portalgon P :349

▶ Proposition 14. After i ≥ 1 iterations of the main loop, let e be an edge of C(RA). If350

cS(e) ≥ 60iκ then ℓ(e) < 21−iL.351

Roughly, the reason is that all those edges are cut in two by the SUBDIVISION routine at352

the beginning of the main loop, and that the rest of the main loop does not insert in C(RA)353

edges that are both«very enclosed»and«much longer»than the edges already in C(RA).354

Note that this is why step 3 of TUBING must remove from RA every thin biface B355

encountered: the interior edges of C(B) may be«very enclosed»in S and«much longer»than356

the edges already in C(RA).357

We sketch the proof of Proposition 14, and defer the complete proof to Appendix E.358

Sketch of proof. We have three claims, one for each routine. Consider the value of R at359

some point in the execution of the algorithm. Let R′ result from applying SUBDIVISION360

to R, and let e′ be an edge of C(R′
A). Our first claim is that if cS(e′) > 14, then there is361

an edge e in C(RA) such that cS(e) ≥ cS(e′) − 12 and ℓ(e) ≥ 2(1 − 12/cS(e′))ℓ(e′). Let us362

prove this claim. First, observe that e′ is not included in the boundary of S(R′
A), since e′ is363
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enclosed and thus not included in the boundary of S, and since e′ is not an inactive loop by364

Lemma 13. Second, the routine starts by inserting the middle point of some edges e of C(RA)365

as a vertex in C(RA). If e′ is one of the resulting two half-segments of e, then ℓ(e) = 2ℓ(e′)366

and cS(e) ≥ cS(e′) by Lemma 9. Finally, given a face F of C(RA), the fragment Q of RA367

corresponding to F is a triangle before the routine. Then the routine may insert the middle368

point of some of the boundary edges of Q as vertices of Q, so Q may have up to six vertices369

during the routine, and so the routine may insert up to three arcs in F , cutting Q into at370

most four fragments. If e′ is one of the arcs inserted in F , Proposition 10 applied at most371

3 times implies that there is a boundary edge f of F such that cS(f) ≥ cS(e′) − 12 and372

ℓ(f) ≥ (1 − 12/cS(e′))ℓ(e′). By the preceding f is not included in the boundary of S(RA),373

so f is a half-segment of an edge e of C(RA), ℓ(e) = 2ℓ(f), and cS(e) ≥ cS(f). That proves374

the first claim.375

The complete proofs of the second and third claims are deferred to Appendix E. Our376

second claim is that if R′ results from applying DELETION to R, and if cS(e′) > 13, then377

there is an edge e in C(RA) such that cS(e) ≥ cS(e′)−12 and ℓ(e) ≥ (1−12/cS(e′))ℓ(e′). The378

reason is that if e′ does not initially belong to C(RA) then e′ is an arc inserted by the routine,379

and Proposition 10 applies. Our third claim is that if R′ results from applying TUBING380

to R, and if cS(e′) > 6, then there is an edge e in C(RA) such that cS(e) ≥ cS(e′) − 5 and381

ℓ(e) ≥ (1 − 4/cS(e′))ℓ(e′). The reason is that if e′ does not initially belong to C(RA) then e′
382

is an interior edge of a thick biface placed by the routine, and Proposition 11 applies.383

Finally we prove the proposition. Let R = P be the input portalgon. Let R′ result384

from applying i iterations of the main loop to R, and assume that there is an edge e′ in385

C(R′
A) such that cS(e′) ≥ 60iκ. DELETION and TUBING where applied iκ times each, and386

SUBDIVISION i times. Also (12 + 5)iκ+ 12i ≤ 29iκ. So our three claims imply that there387

is an edge e in C(RA) such that ℓ(e) ≥ 2i(1 − 29iκ/cS(e′))ℓ(e′) > 2i−1ℓ(e′). And ℓ(e) ≤ L388

since e belongs to the input portalgon. ◀389

5.4 The combinatorial size of the active region is bounded390

In this section we show that when running the algorithm the number mA of vertices of C(RA)391

stays dominated by a linear function of the number n of fragments of the input portalgon P :392

▶ Proposition 15. There is a universal constant λ > 0 for which the following holds. Assume393

κ ≥ 326. Let R′ result from applying one iteration of the main loop to R. If C(RA) has more394

than λ · n vertices, then C(R′
A) has less vertices than C(RA).395

Roughly, the reason is that as long as mA exceeds n by a constant factor, mA is multiplied396

by at most a constant factor by SUBDIVISION at the beginning of the main loop, and mA397

is divided by at least a constant factor by each application of TUBING and DELETION. By398

iterating TUBING and DELETION κ ≥ 326 times we make sure that mA is decreased by399

the main loop.400

Note that DELETION is useless at deleting vertices from C(RA) if most of the vertices of401

C(RA) lie on the boundary of S(RA), or if most of the vertices in the interior of S(RA) are402

incident to a loop edge. Applying TUBING before DELETION ensures that this does not403

happen.404

We need the three following lemmas, proved in Appendix E. Lemma 17 and Lemma 18405

are straightforward consequences of Euler’s formula. Lemma 17 is similar to [9, Lemma 3.2].406

▶ Lemma 16. Let Y be a triangular portalgon whose surface S(Y ) is connected, has genus407

g, b boundary components, and c curved points in its interior. Let I be a set of loop edges of408
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C(Y ) that lie in the interior of S(Y ) and are pairwise-disjoint. At most 9(g + b+ c) loops in409

I are adjacent to only one connected component of S(Y ) \ Y , or are adjacent to a connected410

component of S(Y ) \ I whose corresponding sub-portalgon of Y is not a tube.411

▶ Lemma 17. In a triangulation of genus g, with b boundary components, and with m >412

24(g + b) vertices, at least m/12 vertices have degree smaller than or equal to 6.413

▶ Lemma 18. Every triangulation of genus g with m vertices has less than 6(g +m) edges.414

Proof of Proposition 15. Let N > 9n so that N is greater than the number of vertices of415

the input portalgon P , and greater than the sum of the genus, the number of boundary416

components, and the number of curved points in the interior of S. If C(RA) has mA > 6N417

vertices before SUBDIVISION, then C(RA) has less than 7mA vertices after SUBDIVISION.418

Indeed there are no more vertices inserted by SUBDIVISION than there are edges in C(RA)419

initially, and there are less than 6(N + mA) such edges by Lemma 18, since the genus of420

S(RA) is smaller than or equal to the genus of S. Now consider one iteration of TUBING421

and DELETION. This iteration does not create any new vertex. We claim that if C(RA) has422

mA > 744N vertices right after TUBING, then at this point the interior of S(RA) contains423

more than mA/24 flat vertices of degree smaller than or equal to six not incident to any loop424

edge. First we show why the claim implies the proposition. Any maximal independent set425

of such vertices contains at least mA/(24 × 7) = mA/168 vertices. So DELETION removes426

at least mA/168 vertices. It follows that if C(RA) has mA > 749N vertices before the427

iteration of TUBING and DELETION, then C(RA) has less than 167mA/168 vertices after428

the iteration. Indeed either C(RA) already has at most 744N vertices right after TUBING,429

and 744/749 < 167/168, or at most 167/168 of the vertices in C(RA) after TUBING remain430

in C(RA) after DELETION. That implies the proposition as 7 < (168/167)κ since κ ≥ 326.431

Now we prove the claim. First, observe that after the first step of TUBING the set I432

of inactive loops adjacent to S(RA) contains less than 9N inactive loops. Indeed after the433

first step of TUBING, for every connected component S0 of S(RA), the sub-portalgon of RA434

corresponding to S0 is not a tube. So this follows from Lemma 16 applied to C(R) and I.435

Second, observe that less than 10N loops are kept in J by the second step of TUBING.436

Indeed Lemma 16 applies to C(R) and I ∪ J ′, so less than 9N loops in I ∪ J ′ are are incident437

to only one connected component of S \ (I ∪ J ′), or are incident to a connected component438

of S \ (I ∪ J ′) whose corresponding sub-portalgon of R is not a tube. Among the other loops439

of J ′ less than N are based at a curved vertex. Every other loop is deleted in J .440

This proves that after TUBING there are less than 19N inactive loops adjacent to S(RA).441

Indeed all those loops belong to I ∪ J . This also proves that after TUBING, in the interior442

of S(RA), less than 10N vertices of C(RA) are incident to a loop edge. Indeed every such443

vertex is incident to a loop in J , except in the particular case where before TUBING S(RA)444

was a flat torus and contained exactly one vertex v incident to loop edges, in which case445

TUBING did not modify RA and v remains in C(RA).446

Now after TUBING every vertex on the boundary of S(RA) either lies on the boundary447

of S, and there are less than N such vertices as they all belong to the input portalgon, or448

is the base-vertex of an inactive loop, and there are less than 19N such vertices. So the449

boundary of S(RA) has less than 20N vertices. In the interior of S(RA) less than N vertices450

are curved, and less than 10N are incident to a loop edge. Altogether if C(RA) has mA451

vertices then the interior of S(RA) has more than mA − 31N flat vertices not incident to any452

loop edge. Now assume mA > 744N . Then C(RA) has more than mA/12 vertices of degree453

saller than or equal to six by Lemma 17, since the genus gA and the number of boundary454

component bA of S(RA) satisfy gA ≤ N and bA ≤ 20N , and since mA > 24 × 21N . So the455
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interior of S(RA) has more than mA/12 − 31N > mA/24 flat vertices of degree smaller than456

or equal to six not incident to any loop edge. That proves the claim, and the proposition. ◀457

5.5 Proofs of Proposition 5 and Theorem 1458

Proof of Proposition 5. Run the algorithm with κ ≥ 326. We have two claims that imply459

the proposition. Our first claim is that the algorithm terminates in O(n log2(n) log2(L/s))460

time, and that in the end R has O(n log(L/s)) fragments. To prove this claim let nA and461

LA be respectively the maximum number of fragments, and the maximum fragment edge462

length reached by RA during the execution of the algorithm.463

The algorithm terminates in O(nA log(nA) log(LA/s) log(L/s)) time. Indeed SUBDIVI-464

SION and DELETION take O(nA) time. Also for every tube X simplified by TUBING,465

the systole of S(X) is greater than or equal to the systole of S, for otherwise one of the466

two loops of C(X) forming the boundary of S(X) would be contractible in S, and so would467

bound a topological disk in S, contradicting the Gauss-Bonnet formula. So TUBING takes468

O(nA log(nA) log(LA/s)) time by Lemma 7.469

In the end R has O(nA log(L/s)) fragments since each iteration removes O(nA) fragments470

from the active region RA.471

We have nA = O(n). Indeed C(RA) has O(n) vertices at any time by Proposition 15,472

since κ ≥ 326. So C(RA) has O(n) edges by Lemma 18, and so RA has O(n) fragments.473

We have log(LA/s) = O(log(n) + log(L/s)). Indeed at any time every edge e of474

C(RA) longer than L must satisfy cS(e) < 60κ log(L/s) by Proposition 14. Then ℓ(e)/s ≤475

36000κ log(L/s)n⌈L/s⌉2 by Proposition 8.476

That proves the first claim. Our second claim is that in the end hS(e) = O(log(n) log2(L/s))477

holds on every edge of e of C(R). Indeed if e is in C(RA) then cS(e) ≤ 60κ log(L/s), for478

otherwise Proposition 14 would imply ℓ(e) < 2s, implying that no loop encloses e in S, a479

contradiction. So hS(e) = O(log(L/s)(log(n) + log(L/s))) by Proposition 8. Every other480

edge of C(R) belongs to the carrier of an inactive biface B. Every edge e of C(B) forming481

the boundary of S(B) is either a boundary component of S or an inactive loop, so cS(e) ≤ 2482

by Lemma 13, so hS(e) = O(log(n) + log(L/s)) by Proposition 8. Every edge f of C(B) in483

the interior of S(B) then satisfies hS(f) = O(log(n) + log(L/s)) by Lemma 6. That proves484

the second claim, and the proposition. ◀485

We just proved Proposition 5. In Appendix F we extend Proposition 5 to surfaces having486

positively curved points, essentially by cutting out caps around those points:487

▶ Proposition 19. Let P be a triangular portalgon, with n fragments, of global aspect488

ratio r. One can compute in O(n log2(n) log2(r)) time a triangular portalgon of S(P ) that489

has O(n log(r)) fragments, and happiness O(n log(n) log2(r)).490

Our last technical result is independent, and proved in Appendix G as it is similar to491

previous work on polyhedral meshes:492

▶ Proposition 20. Let P be a triangular portalgon, with n fragments, of happiness h, whose493

surface S(P ) is closed. One can compute the canonical portalgon of S(P ) in O∗(n2h) time.494

Roughly, the proof of Proposition 20 goes by deducing the canonical portalgon from the495

Voronoi diagram of its vertices, which we compute by adapting the shortest path algorithm496

of [12, Section 3]. Theorem 1 is immediate from Proposition 19 and Proposition 20:497
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Proof of Theorem 1. Proposition 19 computes in O∗(n log2 r) time a triangular portalgon498

P ′ of S(P ) that has O(n log r) fragments, and happiness O∗(n log2 r). Proposition 20 then499

computes from P ′ the canonical portalgon of S(P ) in O∗(n3 log4 r) time. ◀500

References501

1 Alexander I. Bobenko and Boris A. Springborn. A Discrete Laplace–Beltrami Operator for502

Simplicial Surfaces. Discrete & Computational Geometry, 38(4):740–756, 2007.503

2 Alexander M. Bronstein, Michael M. Bronstein, and Ron Kimmel. Efficient computation504

of isometry-invariant distances between surfaces. SIAM Journal on Scientific Computing,505

28(5):1812–1836, 2006.506

3 Jindong Chen and Yijie Han. Shortest paths on a polyhedron. In Proceedings of the Sixth Annual507

Symposium on Computational Geometry, page 360–369, 1990. doi:10.1145/98524.98601.508

4 Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf. Computational509

Geometry, pages 147–218. Springer Berlin Heidelberg, Berlin, Heidelberg, 1997. doi:10.1007/510

978-3-662-03427-9_1.511

5 Asi Elad and Ron Kimmel. On bending invariant signatures for surfaces. IEEE Transactions512

on pattern analysis and machine intelligence, 25(10):1285–1295, 2003.513

6 Jeff Erickson. Ernie’s 3D Pancakes: Shortest paths on PL surfaces. https://3dpancakes.514

typepad.com/ernie/2006/03/shortest_paths_.html, 2006.515

7 Jeff Erickson and Amir Nayyeri. Tracing compressed curves in triangulated surfaces. In516

Proceedings of the twenty-eighth annual symposium on Computational geometry, pages 131–140,517

2012.518

8 Leonidas Guibas, John Hershberger, Daniel Leven, Micha Sharir, and Robert Tarjan. Linear519

time algorithms for visibility and shortest path problems inside simple polygons. In Proceedings520

of the second annual symposium on computational geometry, pages 1–13, 1986.521

9 David Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal on Computing,522

12(1):28–35, 1983.523

10 Yong-Jin Liu, Zhanqing Chen, and Kai Tang. Construction of iso-contours, bisectors, and524

Voronoi diagrams on triangulated surfaces. IEEE Transactions on Pattern Analysis and525

Machine Intelligence, 33(8):1502–1517, 2010.526

11 Yong-Jin Liu, Chun-Xu Xu, Dian Fan, and Ying He. Efficient construction and simplification527

of Delaunay meshes. ACM Transactions on Graphics (TOG), 34(6):1–13, 2015.528

12 Maarten Löffler, Tim Ophelders, Rodrigo I. Silveira, and Frank Staals. Shortest Paths in529

Portalgons. In 39th International Symposium on Computational Geometry (SoCG 2023),530

volume 258, pages 48:1–48:16, 2023. doi:10.4230/LIPIcs.SoCG.2023.48.531

13 Facundo Mémoli and Guillermo Sapiro. A Theoretical and Computational Framework for Iso-532

metry Invariant Recognition of Point Cloud Data. Foundations of Computational Mathematics,533

5:313–347, 2005.534

14 Joseph S.B. Mitchell. Shortest Paths and Networks. In Handbook of Discrete and Computational535

Geometry, pages 811–848. Chapman and Hall/CRC, 2017.536

15 Joseph S.B. Mitchell, David M. Mount, and Christos H. Papadimitriou. The Discrete Geodesic537

Problem. SIAM Journal on Computing, 16(4):647–668, 1987.538

16 David M. Mount. Voronoi Diagrams on the Surface of a Polyhedron. University of Maryland,539

1985.540

17 Martin Reuter, Franz-Erich Wolter, and Niklas Peinecke. Laplace–Beltrami spectra as ‘Shape-541

DNA’ of surfaces and solids. Computer-Aided Design, 38(4):342–366, 2006.542

18 Nicholas Sharp, Mark Gillespie, and Keenan Crane. Geometry Processing with Intrinsic543

Triangulations. SIGGRAPH’21: ACM SIGGRAPH 2021 Courses, 2021.544

19 John Stillwell. Classical topology and combinatorial group theory, volume 72. Springer Science545

& Business Media, 2012.546

https://doi.org/10.1145/98524.98601
https://doi.org/10.1007/978-3-662-03427-9_1
https://doi.org/10.1007/978-3-662-03427-9_1
https://doi.org/10.1007/978-3-662-03427-9_1
https://3dpancakes.typepad.com/ernie/2006/03/shortest_paths_.html
https://3dpancakes.typepad.com/ernie/2006/03/shortest_paths_.html
https://3dpancakes.typepad.com/ernie/2006/03/shortest_paths_.html
https://doi.org/10.4230/LIPIcs.SoCG.2023.48


Anonymous author(s) 23:15

20 Haitao Wang. A New Algorithm for Euclidean Shortest Paths in the Plane. Journal of the547

ACM, 70(2):1–62, 2023.548

A Appendix of Section 1549

Proof of Lemma 2. Clearly r′ ≤ r. For the other inequality let e be a longest fragment edge550

of P , and let F be fragment whose smallest height d is minimum. Then r = ℓ(e)/d. Since551

S(P ) is connected there is a sequence of fragment edges e0, . . . , e2k for some 0 ≤ k < p such552

that e0 belongs to F , e2k = e, for every 0 ≤ i < k the edge e2i is matched with the edge e2i+1,553

and the edges e2i+1 and e2i+2 belong to the same fragment. Then ℓ(e2i+2) ≤ r′ · ℓ(e2i+1)554

and ℓ(e2i+1) = ℓ(e2i). So ℓ(e)/d ≤ ℓ(e0)(r′)p−1/d ≤ (r′)p. ◀555

Proof of Corollary 3. Theorem 1 computes the canonical portalgon P ′ of S(P ) inO∗(n3 log4 r)556

time. Cut the fragments of P ′ into triangles along arcs to get a triangular portalgon P ′′. By557

definition of the canonical portalgon the graph C(P ′′) is a Delaunay triangulation of S(P )558

whose vertex set is either a single point or the set of curved points of S(P ). So P ′′ has O(n)559

fragments, and P ′′ has bounded happiness by [12, Section 4]. ◀560

Proof of Corollary 4. Theorem 1 computes the respective canonical portalgons P and P ′ of561

S(P ) and S(P ′) in O∗(n3 log4 r) time. The two canonical portalgons have O(n) fragment562

edges, so we can determine if they are equal in O(n2) time as follows. Fix a fragment edge563

e of P. For every fragment edge e′ of P ′ determine in O(n) time if there is a one-to-one564

correspondence φ from the fragment edges of P to the fragment edges of P ′ that maps e565

to e′, that maps the boundary closed walks of the fragments of P to the boundary closed566

walks of the fragments of P ′, and the matching of P to the matching of P ′, or correctly567

assert that there is none. If φ exists (then φ is unique since S(P) and S(P ′) are connected)568

construct φ in O(n) time. Then determine in O(n) time if for every fragment F of P there569

is an orientation-preserving isometry τF : R2 → R2 satisfying φ(e) = τF (e) on every edge e570

of F . In which case return correctly that P and P ′ are equal. In the end, if every directed571

edge e′ of P ′ has been looped upon, and if no equality has been found, return correctly that572

P and P ′ are distinct. ◀573

B Appendix of Section 2: proof of Lemma 6574

Proof of Lemma 6. Let f be a shortest interior edge of B. Let g ̸= f be the other interior575

edge of B. Let p be a shortest path in S(B). The relative interior p̊ of p cannot intersect576

the relative interior of f twice for those intersections would be crossing and p and f are577

both shortest paths since B is good. So p̊ intersects f less than four times. Then p̊ cannot578

intersect the relative interior of g five times, for those intersections would be crossings, and p̊579

would intersect f in-between any two consecutive crossings with the relative interior of g.580

Altogether p intersects f and g less than seven times each. ◀581

C Appendix of Section 3: proof of Lemma 7582

In this section we prove Lemma 7. We need a few lemmas. Our starting point is a corollary583

of [12, Theorem 21]:584

▶ Lemma 21 (Corollary of [12, Theorem 21]). Let B be a biface of happiness h. One can585

compute in O(log h) time a good biface of S(B).586
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Proof. Apply [12, Theorem 21] to compute in O(log h) time a portalgon P of S(B) with587

O(1) fragment edges, and whose happiness is smaller than or equal to 5. Also maintain588

which fragment vertices of P correspond to the two vertices b0 and b1 of C(B).589

We now describe how to compute, in constant time, from P , a good biface of S(P ). First590

compute, in constant time, by brute force, a shortest path q between b0 and b1: represent q591

by its pre-image in the fragments of P . Cut the fragments of P along the pre-image of q:592

every time a fragment is cut in two along a segment a, the two fragment edges issued of a are593

not matched in the resulting portalgon (the goal is to cut the surface of P , not just changing594

P ). Consider the resulting portalgon D. Then S(D) is homeomorphic to a closed disk. The595

two endpoints b0 and b1 of q become a set V of four vertices of C(D) that lie on the boundary596

of S(D). Every curved point of S(D) lies on the boundary of S(D) and belongs to V . Now597

replace D by a triangular portalgon D′ of S(D), such that V is the vertex-set of C(D′), in598

constant time. This can be done for example by iteratively inserting arcs in the faces of C(D)599

to make C(D) a triangulation, and by deleting a vertex v of C(D) and its incident edges (as600

in Section 3). When v lies on the boundary of S(D), only the edges relatively included in the601

interior of S(D) are deleted. In the end, identify back the occurences of q on the boundary of602

S(D′), by matching the two corresponding fragment edges in D′, thereby obtaining a biface603

B′ of S(B) such that q is an interior edge of B′. Change the other interior edge f ̸= q of B′
604

if this is possible (equivalently, if the quadrilateron S(B′) \ q admits two diagonals instead of605

just one), and if this shortens f . Then B′ is good. ◀606

Consider k ≥ 1 bifaces B1, . . . , Bk. For every 1 ≤ i ≤ k let ei and fi be the two boundary607

edges of Bi. If i < k, assume ℓ(ei) = ℓ(fi+1), and match ei with fi+1. The resulting608

triangular portalgon is a concatenation of the bifaces B1, . . . , Bk.609

▶ Lemma 22. Let P be the concatenation of two good bifaces. One can compute in constant610

time a good biface of S(P ).611

Proof. Consider a shortest path p in S(P ), and the loop edge e in the interior of C(P )612

in-between the surfaces of the two bifaces. We claim that the relative interior of p does not613

cross the relative interior of e more than two times. By contradiction assume that p crosses614

the relative interior of e three times. There is a connected component S0 of S(P ) \ e whose615

angle at the base vertex of e is greater than or equal to π. Some portion p′ of p enters S0616

and then leaves S0 by two of the three crossings between p and e. One of the two connected617

components of S0 \ p′, say S1, is homeomorphic to an open disk. Then S1 has at most three618

angles distinct from π, so they are smaller than π by the Gauss-Bonnet formula, and one of619

them is the incidence of S0 and the base vertex of e. This is a contradiction. That proves620

the claim.621

Using the claim immediately the intersection of p and e has O(1) connected components,622

so p writes as a concatenation of k = O(1) paths p1, . . . , pk such that for every 1 ≤ i ≤ k623

the path pi is either included in e or relatively disjoint from e. Every edge f ̸= e of C(P )624

intersects pi less than 7 times: if f is included in the boundary of S(P ) then f intersects625

pi at most once, otherwise Lemma 6 applies. So f intersects p less than O(1) times. We626

proved that the segment-happiness of P , and thus the happiness of P since P is triangular,627

is O(1). So we can compute a good biface of S(P ) in constant time, exactly as in the proof628

of Lemma 21. ◀629

The following consequence of the Euler formula is similar to Lemma 17:630

▶ Lemma 23. Let Y be a triangular portalgon whose surface S(Y ) is homeomorphic to an631

annulus, such that C(Y ) has one vertex on each boundary component of S(Y ). At least half632
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of the vertices of C(Y ) that lie in the interior of S(Y ) and are not incident to any loop edge633

have degree smaller than or equal to six.634

Proof. We may assume without loss of generality that no vertex of C(Y ) in the interior of635

S(Y ) is incident to a loop edge, by cutting S(Y ) open at an interior loop edge (un-matching636

the two corresponding fragment edges of Y ) and recursing on the resulting two triangular637

portalgons otherwise. Euler formula gives m−m1 +m2 = 0, where m, m1, and m2 count638

respectively the vertices, edges, and faces of C(Y ). Double counting gives 3m2 = 2m1 − 2639

and
∑

v deg v = 2m1, where the sum is over the vertices v of C(Y ). Then
∑

v(6 − deg v) = 4.640

The two vertices of C(Y ) on the boundary of S(Y ) have degree greater than or equal to four.641

So in the interior of S(Y ) every vertex of degree greater than six must be compensated by a642

vertex of degree smaller than six. ◀643

Now we start proving Lemma 7. In particular we fix a tube X with n fragments, of644

maximum fragment edge length L.645

▶ Lemma 24. One can compute in O(n logn) time a concatenation of less than 3n bifaces,646

whose surface is isometric to S(X), whose edges are all shorter than (3n)cL with c =647

log14/13 3.648

Proof. Let us first describe the algorithm before analysing it. As long as there are vertices of649

C(X) in the interior of S(X) that are not incident to any loop edge and have degree smaller650

than or equal to six, we consider a maximal independent set V of such vertices, and we do651

the following. First we delete all the vertices in V along with their incident edges. Then we652

insert arbitrary arcs in the faces of C(X) to make C(X) a triangulation again.653

The algorithm terminates since the number of vertices of C(X) decreases at each iteration.654

In the end every vertex in the interior of S(X) is incident to a loop edge by Lemma 23, so X655

is a concatenation of less than m bifaces, where m ≤ 3n is the initial number of vertices of X.656

Each iteration can be performed in O(n) time by maintaining a bucket with the vertices of657

degree smaller than or equal to six. And we claim that there less than log14/13 m iterations.658

Before proving the claim, observe that it implies the lemma. Indeed the algorithm then659

terminates in O(n logn) time. Also no edge can get longer than 3log14/13 mL = mcL since660

the maximum edge length of C(X) cannot be multiplied by more than 3 at each iteration.661

Let us now prove the claim. Consider the number m′ of vertices of C(X) not incident to662

any loop edge that lie in the interior of S(X). By Lemma 23, if m′ > 0 before an iteration663

of the algorithm, then at least m′/2 such vertices have degree smaller than or equal to six.664

So V contains at least m′/14 vertices, which are deleted. Every non-deleted vertex that665

was incident to a loop edge before the iteration remains incident to a loop edge after the666

iteration. We proved that m′ is divided by at least 14/13 during the iteration, which proves667

the claim. ◀668

Proof of Lemma 7. Apply Lemma 24, and replace X in O(n logn) time by a concatenation669

of less than 3n bifaces whose edges are smaller than (3n)cL for some constant c > 0. Each670

biface B has segment-happiness O((3n)cL/s); Indeed the systole of S(B) is greater than or671

equal to the systole of X, so every segment e in S(B) satisfies hS(B)(e) = O(ℓ(e)/s). Replace672

B by a good biface of S(B) in O(log(n) + log(L/s)) time with Lemma 21. Doing so for all673

bifaces takes O(n(log(n)+log(L/s))) time in total. In the end apply Lemma 22 repeatedly to674

compute, from those O(n) good bifaces, a single good biface of S(X), in O(n) total time. ◀675
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D Appendix of Section 4676

D.1 Proof of Proposition 8677

In this section we prove Proposition 8. First we need a few lemmas.678

▶ Lemma 25. Let t > 1. Assume that there is a shortest path whose relative interior crosses679

the relative interior of e twice in the same direction, at points x and y. If the sub-segment of680

e between x and y is shorter than ⟨x⟩e/2t then cS(e) ≥ t.681

Proof. Consider the portion p of the shortest path that starts just before its crossing at x,682

and ends just before its crossing at y. Consider also a geodesic path q that runs parallel683

to the sub-segment of e from y to x, and let γ be the concatenation of p and q. Then γ is684

non-contractible (since the interior of S has no positively curved point), and shorter than685

⟨x⟩e/t. Base γ at x, and let γ′ be the geodesic loop homotopic to γ (where the basepoint686

at x is fixed in the homotopy). Then γ′ is not longer than γ. In particular γ′ is in general687

position with e.688

We shall now prove that γ′ meets x on both sides of e. To do so, orient e so that γ crosses689

e from right to left. Consider the universal covering space S̃ of S, and a lift ẽ of e in S̃. Let690

x̃ be the lift of x in ẽ. Two lifts of γ′ are incident to x̃: one starts at x̃, the other ends at x̃.691

Let γ̃′ be the lift of γ′ that starts at x̃. We claim that γ̃′ leaves x̃ on the left side of ẽ. Let692

us prove the claim. Since the interior of S̃ contains no positively curved point, there is a693

geodesic L̃, containing ẽ, such that on both ends L̃ is either infinite or reaches the boundary694

of S̃. Then L̃ separates S̃ in two connected components. Consider the endpoint ã of γ̃′.695

Consider also the lift p̃ of p that starts at x̃, and the lift q̃ of q that starts at the endpoint of696

p̃. Then q̃ ends at ã. Also p̃ is disjoint from L̃ except for its start point at x̃ (recall that the697

interior of S has no positively curved point). Moreover q̃ is disjoint from L̃. For otherwise q̃698

would intersect L̃ at a point b̃ whose distance to x̃ would be smaller than ⟨x⟩e/t. But then699

the sub-segment of L̃ between b̃ and x̃ would be no longer, and so would be included in ẽ. In700

particular q̃ and ẽ would intersect, a contradiction. We proved that ã lies strictly to the left701

of L̃. Then γ̃′ leaves x̃ on the left of L̃, proving the claim. Similar arguments show that the702

lift of γ′ ending at x̃ meets x̃ on the right of L̃. That proves that γ′ meets x on both sides of703

e. ◀704

Recall that in this paper log(·) denotes log2(⌈·⌉) + 1.705

▶ Lemma 26. Holds hS(e) ≤ 24cS(e) log(ℓ(e)/s).706

Proof. Let t > 1. Assume that in S there is a shortest path p that intersects e more than707

24t log(ℓ(e)/s) times. Cut e at its middle point. One of the two resulting sub-segments708

of e, say f , intersects p more than 12t log(ℓ(e)/s) times. Partition f into sub-segments709

f0, f1, . . . , fn for some n ≤ log(ℓ(e)/s), where the sub-segment f0 contains the points x ∈ f710

such that ⟨x⟩e ≤ s/4, and where for every 1 ≤ i ≤ n the sub-segment fi contains the points711

x ∈ f such that 2i−3s ≤ ⟨x⟩e ≤ 2i−2s. There is 0 ≤ i ≤ n such that p intersects fi more712

than 6t times, since 6tn ≤ 12t log(ℓ(e)/s). Then the relative interior of p crosses fi twice713

(at least) in the same direction at points x and y, such that the sub-segment of fi between714

x and y is shorter than 2i−4s/t, since ℓ(fi) ≤ 2i−3s. Also i ≥ 1 as no shortest path crosses715

f0 twice, since ℓ(f0) < s/2 (recall that the interior of S has no positively curved point). In716

particular ⟨x⟩e ≥ 2i−3s. Then cS(e) ≥ t by Lemma 25. ◀717

▶ Lemma 27. Holds ℓ(e) ≤ 600cS(e)n⌈L/s⌉L.718
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Proof. Let t > 1. Assume ℓ(e) ≥ 600tn⌈L/s⌉L. We will prove that cS(e) ≥ t. This will719

prove the proposition since cS(e) ≥ 1. To do so let d = 120n⌈L/s⌉L. Cut e into three720

segments, a middle segment e0 of length d, and two peripheral segments each longer than721

2td. We claim that there is in S a shortest path crossing the relative interior of e0 twice in722

the same direction. This claim implies cS(e) ≥ t by Lemma 25, which proves the proposition.723

Let us prove the claim. Consider a triangular portalgon P of S with n fragments and of724

maximum fragment edge length L. Cut each edge of C(P ) into 2⌈L/s⌉ equal-length segments,725

that we shall call doors. Each door is smaller than or equal to half the systole of S so it is726

a shortest path. There are at most 6n⌈L/s⌉ doors since C(P ) has at most 3n edges. Each727

sub-segment e1 of length 4L of e0 contains in its relative interior three points x0, x1, x2 in728

this order such that x0 /∈ p, x1 ∈ p, and x2 /∈ p for some door p. The relative interior of e0729

intersects at least 30n⌈L/s⌉ times doors this way, so there is a door p intersected at least 5730

times by the relative interior of e0. Then each intersection is a single point (p and e0 do not731

overlap). Two of those intersection points may be end-points of p, but otherwise the relative732

interior of p crosses the relative interior of e0 at least three times. So p crosses e0 twice in733

the same direction, which proves the claim, and the proposition. ◀734

Proof of Proposition 8. We have hS(e) ≤ 24cS(e) log(ℓ(e)/s) by Lemma 26 and ℓ(e)/s ≤735

600cS(e)n⌈L/s⌉2 by Lemma 27. Then log(ℓ(e)/S) < 10(log(cS(e))+log(n)+2 log(L/s)). ◀736

D.2 Proof of Lemma 9737

Proof of Lemma 9. Let t > 1. Assume that there is a loop γ, based at a point x, that738

encloses f by a factor of t. Then γ encloses e by a factor of t since ⟨x⟩f ≤ ⟨x⟩e. ◀739

D.3 Proof of Proposition 10740

In this section we prove Proposition 10. First we need a lemma:741

▶ Lemma 28. In S, let e be and f be two relatively disjoint segments, and let γ be a geodesic742

loop. Assume that γ encloses e by a factor of t > 2, and that γ intersects f at a point y such743

that ⟨y⟩f > ℓ(γ). Rebase γ at y, and let γ′ be the geodesic loop homotopic to it. Then γ′
744

meets y on both sides of f .745

Proof. We have ℓ(γ′) ≤ ℓ(γ) so ℓ(γ′) < ⟨y⟩f , and so γ′ is in general position with f . We746

prove the lemma by contradiction, so assume that γ′ meets y only on the right side of f , for747

some direction of f . In the universal covering space S̃ of S, consider a lift f̃ of f . Let ỹ be748

the lift of y that belongs to f̃ . Since the interior of S̃ contains no positively curved point,749

there is a geodesic L̃, containing f̃ , such that on both ends L̃ is either infinite or reaches750

the boundary of S̃. Then L̃ separates S̃ in two connected components. The two lifts of γ′
751

incident to ỹ meet ỹ on the right side of f̃ by assumption, and they are otherwise disjoint752

from L̃. In particular, their other endpoints lie on the right side of L̃.753

We have ℓ(γ) < ⟨y⟩f so γ is in general position with f . Direct γ so that γ crosses f from754

right to left at y, and write γ as the concatenation of two paths γ0 and γ1 respectively before755

and after its crossing at y. There is a lift γ̃1 of γ1 that leaves ỹ on the left of f̃ . And γ̃1 is756

otherwise disjoint from L̃, since the interior of S̃ has no positively curved point. Thus the757

endpoint x̃ of γ̃1 lies on the left of L̃. There is a lift γ̃0 of γ0 that starts at x̃. And γ̃0 is758

otherwise disjoint from γ̃1 since γ meets x on both sides of e, and since the interior of S̃ has759

no positively curved point. By the previous paragraph, the endpoint of γ̃0 lies on the right760

side of L̃, so γ̃0 intersects L̃. Cut γ̃0 at its first intersection point z̃ with L̃. Let Ĩ be the761
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sub-segment of L̃ between ỹ and z̃. The concatenation of the prefix of γ̃0 ending at z̃, of Ĩ,762

and of γ̃1 is a simple closed curve C̃. At x̃, there is a portion of ẽ that enters the bounded763

side of C̃, since γ meets x on both sides of e. This portion of ẽ can be extended into a764

geodesic p̃ that meets C̃ at some point ṽ, since the interior of S̃ has no positively curved765

point. Then ṽ belongs to the relative interior of Ĩ. We claim that ṽ belongs to the relative766

interiors of both ẽ and f̃ , which is a contradiction since e and f are relatively disjoint. To767

prove the claim, first observe that the distance between ỹ and z̃ in S̃ is at most ℓ(γ), and768

this distance is equal to the length of Ĩ, since the interior of S̃ has no positively curved point.769

So the sub-segment of Ĩ between ỹ and ṽ is no longer than ℓ(γ) < ⟨y⟩f , and is thus included770

in the relative interior of f̃ . Also, the distance between ṽ and x̃ is smaller than or equal to771

2ℓ(γ) ≤ 2⟨x⟩e/t < ⟨x⟩e, so p̃ is included in the relative interior of ẽ. ◀772

Figure 5 The setting of Lemma 29.773

The proof of Proposition 10 also relies on the following construction. See Figure 5. In the774

Euclidean plane R2 let Q be a polygon with more than three vertices. Let e be a shortest775

arc of Q. Let f and f ′ be sides of Q separated by e along the boundary of Q. Let x be a776

point in the relative interior of e. Let y and y′ be points that lie on respectively f and f ′
777

(possibly vertices of Q), and do not lie on e. Assume that the segments p and p′ between x778

and respectively y and y′ are relatively included in the interior of Q. Then:779

▶ Lemma 29. Let t > 6. If ℓ(p) ≤ ⟨x⟩e/t and ℓ(p′) ≤ ⟨x⟩e/t, then at least one of f and f ′,780

say f , is such that ⟨y⟩f ≥ (1 − 4/t)⟨x⟩e and ℓ(f) ≥ (1 − 4/t)ℓ(e).781

Proof. Assume without loss of generality that e is horizontal, that f lies above e, and that782

x is the origin (0, 0) ∈ R2. Then x cuts e into two segments e0 and e1, respectively the right783

and left one. Let v0 and v1 be respectively the right and left endpoints of e. Consider the784

following algorithm in three phases. In the first phase consider the point z = x and move z785

along p. Doing so, consider the segments from z to v0 and v1. If moving z makes the relative786

interior of one of those two segments intersect ∂Q, then stop: this is a break condition. Also787

break if z reached y and y is a vertex of Q. Otherwise the algorithm enters its second phase.788

Then y cuts f in two segments f0 and f1, where f0 is on the right of y as seen from the path789

p directed from x to y. In phase two move z along f0 or f1, choosing carefully which segment790

to move along so that the second coordinate of z does not increase. We assume without loss791

of generality that z moves along f0, by flipping the figure horizontally otherwise. Move along792

f0 by a distance of (1 − 4/t)ℓ(e0), but break if z reaches the right end-vertex of f , or if the793

relative interior of the segment between z and v0 intersects ∂Q. If the algorithm did not794

break, it enters its third and final phase. In this phase put z back on y, and move it along795

the other sub-segment of f , here f1, by a distance of (1 − 4/t)ℓ(e1), breaking if z reaches the796

left end-vertex of f , or if the relative interior of the segment between z and v1 intersects ∂Q.797
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If the algorithm did not break then ℓ(f) ≥ (1 − 4/t)ℓ(e) and ⟨y⟩f ≥ (1 − 4/t)⟨x⟩e and we798

are done. Otherwise, if the algorithm broke, consider the triangle ∆ between v0, v1, and z.799

The break conditions ensure that the interior of ∆ is included in the interior of Q, and that800

there is a vertex w of Q that lies on ∂∆ and not on e. We claim that the inner-angles of801

∆ at v0 and v1 are both strictly smaller than π/4. We prove this claim by considering the802

coordinates (α, β) ∈ R× [0,+∞[ of z, and the coordinates (ℓ(e0), 0) and (−ℓ(e1), 0) of v0 and803

v1 respectively, and by proving that the invariants ℓ(e0)−α > β and α+ℓ(e1) > β hold at any804

time during the algorithm. Let m = min(ℓ(e0), ℓ(e1)) = ⟨x⟩e. In the first phase |α| ≤ m/t805

and 0 ≤ β ≤ m/t, so the invariants hold since t > 2. In the second phase β does not increase806

and α does not decrease. Moreover α does not increase by more than ℓ(e0)(1 − 4/t) so the807

invariants hold. If the second phase ends without breaking then the absolute slope λ of the808

line supporting f is smaller than or equal to 1/(t− 5). Indeed during the second phase β809

decreased by at most m/t while z moved a distance ℓ(e0)(1 − 4/t), so α increased by at810

least ℓ(e0)(1 − 4/t) −m/t, and so 1/λ ≥ ℓ(e0)(1 − 4/t)t/m− 1 ≥ t− 5. In the third phase811

α ≥ −m/t− ℓ(e1)(1 − 4/t) and β ≤ m/t+ λℓ(e1)(1 − 4/t) so α+ ℓ(e1) ≥ 3ℓ(e1)/t > β since812

t > 6. Also β increases less than α decreases since λ < 1/2, so ℓ(e0) − α > β remains true.813

That proves the claim.814

Applying the algorithm to p′ and f ′ on the other side of e, either the algorithm does not815

break in which case ℓ(f ′) ≥ (1 − 4/t)ℓ(e), ⟨y′⟩f ′ ≥ (1 − 4/t)⟨x⟩e, and we are done. Or the816

algorithm breaks and we get similarly a triangle ∆′ and a vertex w′ of P . The inner angles817

of ∆′ at v0 and v1 are also both strictly smaller than π/4, so the segment between w and w′
818

is relatively included in the interior of the quadrilateron formed by ∆ and ∆′, and is strictly819

shorter than e. This segment is an arc of Q shorter than e, a contradiction. ◀820

Proof of Proposition 10. Let t > 6. Assume that there is a geodesic loop γ that encloses821

e by a factor of t. Let x be the basepoint of γ. In the Euclidean plane, consider the822

fragment Q corresponding to F . Let ê and x̂ be the pre-images of e and x in Q. Consider823

the prefix and the suffix of γ that leave x on both sides of e to meet ∂F , and their pre-824

image paths in Q that meet two boundary edges f̂ and f̂ ′ of Q, at respective points ŷ and825

ŷ′. By Lemma 29, one of those two points, say ŷ without loss of generality, is such that826

⟨ŷ⟩
f̂

≥ (1 − 4/t)⟨x̂⟩
ê

and ℓ(f̂) ≥ (1 − 4/t)ℓ(ê). Also f̂ projects to a boundary edge f of F ,827

and ŷ projects to a point y in the relative interior of f . Now rebase γ at y, and consider the828

geodesic loop γ′ homotopic to it (where the basepoint at y is fixed by the homotopy). Then829

ℓ(γ′) ≤ ℓ(γ) = ⟨x⟩e/t < ⟨y⟩f/(t− 4). In particular ℓ(γ′) < ⟨y⟩f since t > 5. And γ′ meets y830

on both sides of f by Lemma 28, since t > 2. ◀831

D.4 Proof of Proposition 11832

In this section we prove Proposition 11. First we need a lemma:833

▶ Lemma 30. Let B be a good biface. Let f be a longest boundary edge of C(B), and let F834

be the face of C(B) adjacent to f . Each corner of F incident to f has angle smaller than or835

equal to π/2.836

Proof. Let e be a shortest interior edge of C(B), and let g ≠ e be the other interior edge837

of C(B). Then e, g, and f are the sides of F . The angle at the corner of F between f and838

g is smaller than π/2 since ℓ(e) ≤ ℓ(g). Now consider the corner c between f and e. Cut839

S(B) open along e and consider the resulting quadrilateron Q in the plane. The edge f840

of C(B) corresponds to a side f̂ of Q, the edge e corresponds to two opposite sides ê and841

ê′, and the edge g corresponds to an arc ĝ of Q. Also the other boundary edge f ′ ̸= f of842
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C(B) corresponds to the side f̂ ′ of Q opposite to f̂ . And the corner c corresponds to the843

corner ĉ of Q between ê and f̂ . Let d̂ be the corner of Q opposite to ĉ, between ê′ and f̂ ′.844

Assume by contradiction that the angle at ĉ is greater than π/2. We have ℓ(ê) = ℓ(ê′) and845

ℓ(f̂) ≥ ℓ(f̂ ′) so the angle at d̂ is greater than or equal to the angle at ĉ, and in particular is846

also greater than π/2. The two other angles of Q are smaller than π, so Q is convex and847

admits a diagonal p ̸= ĝ. Consider the unique circle C that admits ĝ as a diameter. Then848

the two endpoints of p lie in the interior of C. So p is shorter than ĝ. This contradicts the849

assumption that B is good. ◀850

Proof of Proposition 11. Let g and g′ be respectively a shortest interior edge and a longest851

boundary edge of B. Then ℓ(g) ≤ ℓ(g′) since B is thick. We claim that if cS(g) > 2,852

then cS(g′) ≥ cS(g) − 1. To prove the claim let t > 2 and assume that there is a loop γ853

that encloses g by a factor of t in S. Let x be the basepoint of γ. Let F be the face of854

C(B) adjacent to g′. Around x there is a portion of γ that enters F . This portion of γ855

must leave F by a point y of g′ since the angle of F between g and g′ is smaller than or856

equal to π/2 by Lemma 30, since ℓ(g) ≤ ℓ(g′), and since ℓ(γ) = ⟨x⟩g/t < ⟨x⟩g/
√

2. Then857

⟨y⟩g′ ≥ ⟨x⟩g − ℓ(γ) = (1 − 1/t)⟨x⟩g by triangular inequality and since ℓ(g) ≤ ℓ(g′). Rebase858

γ at y, and consider the geodesic loop γ′ homotopic to it (where the homotopy fixes the859

basepoint at y). Then ℓ(γ′) ≤ ℓ(γ) = ⟨x⟩g/t ≤ ⟨y⟩g′/(t−1). And γ′ encloses g′ by Lemma 28,860

since t > 2. That proves the claim.861

If e = g we are done by our claim, so assume that e is a longest interior edge of C(B).862

Deleting e merges the two faces of C(B) into a single face F ′ of which e is a shortest arc, since863

B is good. So Proposition 10 applies since cS(e) > 6: there is a boundary edge f of F ′ such864

that cS(f) ≥ cS(e) − 4 and ℓ(f) ≥ (1 − 4/cS(e))ℓ(e). If f is a boundary edge of C(B) we are865

done. Otherwise f = g so ℓ(g′) ≥ ℓ(f) ≥ (1−4/cS(e))ℓ(e) and cS(g′) ≥ cS(f)−1 ≥ cS(e)−5866

by our claim since cS(e) > 6. That proves the proposition. ◀867

D.5 Proof of Proposition 12868

In this section we prove Proposition 12. First we need two lemmas:869

▶ Lemma 31. Let B be a thin biface. Among the two interior edges of C(B) let e be a870

shortest one. Each one of the four corners between e and the boundary of S(B) has angle871

greater than π/4.872

Proof. Assume by contradiction that there is a corner c between e and a boundary edge f873

of C(B) whose angle is smaller than or equal to π/4. Cut S(B) open along e and embed874

the resulting quadrilateron Q in the plane, isometrically. The edge e corresponds to two875

opposite sides ê and ê′ of Q. The edge f corresponds to one of the other two sides of Q, that876

we call f̂ . The vertex v of the corner c corresponds to the two end-vertices of f̂ : let v̂ be877

the one incident to ê, and let v̂′ be the one incident to ê′. Without loss of generality the878

corner c corresponds to the corner of Q at v̂, whose angle is thus smaller than or equal to879

π/4. Consider the orthogonal projection x of v̂′ on the line containing ê. Then x belongs to880

ê since ê is longer than f̂ , as B is thin. The segment p between x and v̂′ is shorter than the881

portion of ê between x and v̂. Also p is included in Q since ê and ê′ are longer than f̂ . Thus882

p projects to a path that shortcuts e, contradicting the fact that B is a good biface. ◀883

▶ Lemma 32. In S(B) every path p between the two boundary components of S(B) is such884

that ℓ(p) ≥ ℓ(e)/2.885
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Proof. Without loss of generality one of the two endpoints of p (at least) is a vertex v of886

C(B). Consider the other endpoint x of p, and the vertex w ̸= v of C(B). There is a path q887

from x to w in the boundary of S(B). Without loss of generality ℓ(q) ≤ ℓ(e)/2 since B is thin.888

Also e is a shortest path since B is good. So ℓ(p) + ℓ(q) ≥ ℓ(e). We proved ℓ(p) ≥ ℓ(e)/2. ◀889

Proof of Proposition 12. Let e be a shortest interior edge of C(B), and let f be a boundary890

edge of C(B). We have ℓ(e) ≥ ℓ(f) since B is thin. Assume by contradiction that there is891

in S a loop γ that encloses f by a factor of t > 2. Let x be the basepoint of γ. There is a892

portion of γ that leaves x and enters the interior of S(B). This portion of γ cannot leave893

S(B) via the other boundary edge of S(B), for otherwise ℓ(γ) ≥ ℓ(e)/2 by Lemma 32, so894

ℓ(γ) > ⟨x⟩f/t, a contradiction. Then γ intersects e. And f and e have a corner whose angle895

is smaller than π/4 since ℓ(γ) < ⟨x⟩f/2. This contradicts Lemma 31. ◀896

E Appendix of Sections 5.3 and 5.4897

E.1 End of proof of Proposition 14898

End of proof of Proposition 14. All there remains to do is to prove the second and third899

claims. First we recall the second claim. Let R′ result from applying DELETION to R, and900

assume that there is an edge e′ in C(R′
A) such that cS(e′) > 13. Our second claim was that901

there is an edge e in C(RA) such that cS(e) ≥ cS(e′)−12 and ℓ(e) ≥ (1−12/cS(e′))ℓ(e′). Now902

we prove the second claim. Assume that e′ does not belong to C(RA), for otherwise we are903

done. Then e′ was inserted in a face F by the routine, where F results from the DELETION904

of a vertex v and its incident edges. At most 3 arcs were inserted in F since the degree of v905

was smaller than or equal to six. By applying Proposition 10 at most three times, we get that906

there is a boundary edge e of F such that cS(e) ≥ cS(e′) − 12 and ℓ(e) ≥ (1 − 12/cS(e′))ℓ(e′).907

And e is an edge of C(RA). That proves the second claim.908

Now we recall the third claim. Let R′ result from applying TUBING to R, and assume909

that there is an edge e′ in C(R′
A) such that cS(e′) > 6. Our third claim was that there is an910

edge e in C(RA) such that cS(e) ≥ cS(e′) − 5 and ℓ(e) ≥ (1 − 4/cS(e′))ℓ(e′). Now we prove911

the third claim. Assume that e′ does not belong to C(RA), for otherwise we are done. Then912

e′ is an interior edge of a good biface B computed by the routine in step 3. And B is thick913

for otherwise B would have been removed from RA by the routine, and marked as an inactive914

region. So by Proposition 11 there is a boundary edge e of B such that cS(e) ≥ cS(e′) − 5915

and ℓ(e) ≥ (1 − 4/cS(e′))ℓ(e′). And e is an edge of C(RA). That proves the third claim. ◀916

E.2 Proof of Lemma 16917

Proof of Lemma 16. Cut S(Y ) along I, and consider the resulting surfaces, and their918

corresponding sub-portalgons of Y . Let Z contain those portalgons, and let Z ′ ⊆ Z contain919

those that are not tubes. Without loss of generality I ̸= ∅. Then every Y0 ∈ Z is such that920

∂S(Y0) ̸= ∅ since S(Y ) is connected. Let χ(Y0), c(Y0), and d(Y0) be respectively the Euler921

characteristic of S(Y0), the number of curved points in the interior of S(Y0), and the number922

of boundary components of S(Y ) that belong to S(Y0). Let λ(Y0) = 2c(Y0) + 2d(Y0) −χ(Y0).923

We claim that every Y0 ∈ Z satisfies λ(Y0) ≥ 0, and that if Y0 ∈ Z ′ then λ(Y0) > 0. Indeed924

we have χ(Y0) ≤ 1 since S(Y0) is not homeomorphic to a sphere. So assuming λ(Y0) ≤ 0, we925

get c(Y0) = d(Y0) = 0. Then χ(Y0) ̸= 1 for otherwise S(Y0) would be homeomorphic to a disk,926

would have no curved point in its interior, and would be bounded by a single geodesic loop927

(issued of I), contradicting Gauss-Bonnet Formula. So χ(Y0) = 0. Then Y0 is a tube since928
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S(Y0) is not homeomorphic to a torus. That proves the claim. Now for every Y0 ∈ Z ′ let b(Y0)929

be the number of boundary components of S(Y0). The claim implies b(Y0) ≤ 2 − χ(Y0) ≤930

2 + λ(Y0) ≤ 3λ(Y0). So
∑

Y0∈Z′ b(Y0) ≤ 3
∑

Y0∈Z′ λ(Y0) ≤ 3
∑

Y0∈Z λ(Y0) ≤ 9(g + b + c).931

Therefore at most 9(g + b + c) loops in I are incident to the surface of some Y0 ∈ Z ′. If932

every other loop in I is incident to the surfaces of two distinct Y0, Y1 ∈ Z then we are done.933

Otherwise there is a loop e ∈ I incident to the surface of only one Y0 ∈ Z, and such that Y0934

is a tube (Y0 /∈ Z ′). Then S(Y ) is a flat torus and e is the only loop in I, so we are done.935

That proves the lemma. ◀936

E.3 Proof of Lemma 17937

Proof of Lemma 17. Let m1 and m2 count respectively the edges and the faces of the938

triangulation. Euler formula gives 6m− 6m1 + 6m2 = 12 − 12g − 6b. Double counting gives939

3m2 ≤ 2m1 − b and 2m1 =
∑

v deg v, where the sum is over the vertices, and where deg v940

denotes the degree of a vertex v. Then
∑

v 6 − deg v = 6m− 2m1 ≥ 6m− 6m1 + 6m2 + 2b ≥941

12 − 12g− 4b > −m/2. Let a and b count the number of vertices whose degree is respectively942

smaller than or equal to 6, and greater than six. Then b < 5a+m/2. Assuming a < m/12,943

we get b < 11m/12, and so a+ b < m. This is a contradiction. ◀944

E.4 Proof of Lemma 18945

Proof of Lemma 18. Let m1 and m2 count respectively the edges and the faces of the946

triangulation, and let b count its boundary components. Double counting gives 3m2 ≤ 2m1.947

Euler formula gives m1 − m2 = m + 2g + b − 2. And we have b ≤ m. Therefore m1 ≤948

3m1 − 3m2 < 6(m+ g). ◀949

F Proof of Proposition 19950

In this section we deduce Proposition 19 from Proposition 5, casting off the requirement of951

non-positive curvature of Proposition 5. Essentially, we cut out caps around the positively952

curved vertices, apply Proposition 5 to the truncated portalgon, and we put the caps back.953

Figure 6 Cutting out a cap in the proof of Proposition 19.954

Proof of Proposition 19. Let S := S(P ) be the surface of P . Let d be the minimum height955

of the fragments of P . Given a vertex v of C(P ) in the interior of S, we define a region956

around v in S, as follows. On every directed edge e of C(P ) whose tail is v, place a point at957

distance d/6 from the tail of e along e. Link those k ≥ 1 points in order around v, using958

geodesic segments within the faces of C(P ) incident to v. In each corner of C(P ) incident to959

v there is a newly created triangle incident to v. Those k triangles define a region around960

v, that we call cap C of v. Importantly, every point in the cap of v is at distance smaller961

than or equal to d/6 from v in S. Also every segment p tracing the boundary of C satisfies962
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ℓ(p) ≥ d/6r. To see that consider the face F of C(P ) containing p, and the two sides e0 and963

e1 of F incident to v. For each i consider the point on ei at distance m := min(ℓ(e0), ℓ(e1))964

from v along ei. Join those two points by a geodesic segment q in F . Then q is at least as965

long as the minimum height of the fragment corresponding to F , and ℓ(q)/ℓ(p) = 6m/d by966

Thales theorem. So ℓ(p) ≥ d/6r.967

For the sake of analysis, given an arbitrary vertex v of C(P ) (possibly on the boundary of968

S), we define an other kind of region around v. Link the middle points of the edges around969

v in order around v. The resulting triangles around v constitute the protected region of v.970

Importantly, every path smaller than d/2 starting from v must lie in the protected region of971

v. Indeed every geodesic path p smaller than d starting from v is relatively included in a972

single face or edge of C(P ). Then every prefix of p smaller than ℓ(p)/2 lies in the protected973

region of v.974

First construct in O(n) time a triangular portalgon P0 of S, as follows. Consider every975

positively curved vertex v in the interior of C(P ) (if any), and trace the boundary of the976

cap around v in the fragments of P . Then cut the fragments along the trace, as in Figure 6.977

Afterward some fragments of P0 may not be triangles, so cut them along arcs. Now remove978

the fragments corresponding to the caps from P0, and let P1 be the resulting triangular979

portalgon. The interior of S(P1) has no positively curved vertex. If moreover S(P1) is simply980

connected then every edge of C(P1) is the unique shortest path between its endpoints, so the981

segment-happiness of P1 is 1.982

Our first claim is that if S(P1) is not simply connected, then the systole of S(P1) is983

greater than or equal to d/6r. By contradiction assume that there is a non-contractible984

closed curve γ in S(P1) smaller than d/6r. Without loss of generality γ intersects a vertex w985

of C(P1). If w is a vertex of C(P ), then γ lies in the protected region around w, and so γ986

is contractible in S(P1), a contradiction. If w is a vertex on the boundary of some cap C987

removed, then γ lies in the protected region around the central vertex of C. In that case γ988

is at least as long as any edge of the boundary of C, so ℓ(γ) ≥ d/6r. That proves the first989

claim.990

The number of fragments and the maximum fragment edge length of P1 may be greater991

than those of P , but only by a constant factor. Using the first claim and Proposition 5, replace992

P1 by a triangular portalgon of S(P1) with O(n log(r)) fragments, whose segment-happiness993

is O(log(n) log2(r)), all in O(n log2(n) log2(r)) time. Place back the caps on S(P1), and994

return the resulting triangular portalgon P ′.995

Our second claim is that the segment-happiness of P ′, and thus the happiness of P ′
996

since P ′ is triangular, is bounded by O(n log(n) log2(r)). To prove the second claim, we997

call cap path any shortest path in S that lies in the closure of some cap. We call rogue998

path any shortest path in S whose relative interior is disjoint from the closures of the caps.999

Every rogue path intersects every edge of C(P ′) at most O((logn) log2 r) times, since the1000

segment-happiness of P1 is O((logn) log2 r). Also every cap path intersects every edge of1001

C(P ′) at most once. Now consider a shortest path p in S. Then p uniquely writes as a1002

sequence X of alternatively cap paths and rogue paths. Also, there cannot be two distinct1003

cap paths q0 and q1 in X that both lie in the same cap C. For otherwise any point of q01004

would be at distance at most d/3 from any point of q1. Also the subpath of p between q0 and1005

q1 contains a rogue path, that must leave the protected region around the central vertex of C,1006

and is thus longer than d/2 − d/6 = d/3. That contradicts the fact that p is a shortest path.1007

We proved that there are at most O(n) paths in X, each intersecting at most O((logn) log2 r)1008

times any given edge of C(P ′). That proves the second claim, and the proposition. ◀1009
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G Proof of Proposition 201010

In this section we prove Proposition 20. We fix throughout a triangular portalgon P with n1011

fragments, of happiness h, whose surface S := S(P ) is closed. We let V contain the curved1012

points of S (all of them are vertices of C(P )) if there are any. Otherwise, if S is a flat torus,1013

we let V contain a single arbitrary vertex of C(P ).1014

The canonical portalgon of S is the one obtained by cutting S open along the Delaunay1015

tessellation D of (S, V ). We compute D from the Voronoi diagram V of (S, V ). The duality1016

between the two is classical in the plane [4]. To compute V we slightly extend the single-source1017

shortest path algorithms of [12] to multiple-sources, adopting a strategy similar to that of [16]1018

on polyhedral meshes.1019

G.1 Preliminaries on the Delaunay tessellation1020

We give the definition of Bobenko and Springborn [1] of the Delaunay tessellation of (S, V ).1021

An immersed empty disk is a pair (D,φ) where D is an open disk in the plane, and1022

φ : D → S is a map whose restriction to D is an isometric immersion such that φ(D)∩V = ∅.1023

(Note that φ is in general not injective.) Then:1024

▶ Lemma 33 (Proposition 4 of [1]). There is a unique tessellation D of S such that for every1025

immersed disk (D,φ), if φ−1(V ) is not empty, then the convex hull of φ−1(V ) projects to1026

either a vertex, an edge, or the closure of a face of D, and such that every vertex, edge, and1027

face of D can be obtained this way.1028

The tessellation D given by Lemma 33 is the Delaunay tessellation of (S, V ). In1029

preparation for future work we also consider the following definition. For every point x ∈ S1030

there is an immersed empty disk (D,φ) such that φ maps the center of D to x, and such1031

that φ−1(V ) ̸= ∅. And (D,φ) is unique to x in the sense that if (D′, φ′) is an other such1032

immersed empty disk then there is a plane isometry ψ : R2 → R2 satisfying D′ = ψ(D) and1033

φ = φ′ ◦ ψ. We say that (D,φ) is the maxi-disk of the point x.1034

G.2 Preliminaries on the Voronoi diagram1035

The (1-skeleton of the) Voronoi diagram of (S, V ) is the set V of points x ∈ S such that1036

the distance between x and V is realized by at least two distinct paths in S.1037

▶ Lemma 34. The Voronoi diagram V of (S, V ) is a graph with finitely many vertices, of1038

minimum degree greater than or equal to three, and whose edges are geodesic segments.1039

Proof. Let (D,φ) be the maxi-disk of a point x ∈ S, and let x⋆ be the center of D. The1040

geodesic paths between x⋆ and φ−1(V ) correspond via φ to the shortest paths between x1041

and V . So x ∈ V if and only if φ−1(V ) contains m ≥ 2 points. Assume x ∈ V. Let X be1042

(the 1-skeleton of) the classical Voronoi diagram of φ−1(V ) in the plane. Then X is made of1043

m geodesic rays emanating from x⋆. There is an open ball O ⊂ D on which φ is injective,1044

containing x⋆, and such that φ(X ∩O) = V ∩ φ(O). There are two cases. If m = 2 then V is1045

locally a geodesic path around x. If m ≥ 3 then V is locally a geodesic star whose central1046

vertex is x. In particular V is a graph whose minimum degree is greater than or equal to1047

three, and whose edges are geodesic segments. And V has finitely many vertices since S is1048

compact. ◀1049



Anonymous author(s) 23:27

G.3 Computation of the Voronoi diagram1050

We compute the Voronoi diagram V of (S, V ) by slightly extending [12, Theorem 13]. They1051

compute the shortest paths emanating from a point x0 ∈ S by decomposing S according1052

to how those paths visit the fragments of the input portalgon P . They describe a discrete1053

process that simulates the propagation of some waves on the surface. Their waves all start1054

from the point x0. We adapt their strategy to simulate waves that start from all the points1055

in V , so that the waves meet along V. That simplifies the algorithm since waves now meet1056

along a geodesic graph (by Lemma 34) and do not go through curved points. More precisely1057

we prove the following:1058

▶ Lemma 35 (Extension of [12, Theorem 13]). One can compute in O∗(n2h) time a triangular1059

portalgon P ′ of S with O(n2h) fragments, and a subgraph V of C(P ′), such that V is the1060

Voronoi diagram of (S, V ).1061

The rest of this section is devoted to the proof of Lemma 35. We let F contain the1062

fragments of P . Without loss of generality we assume that they are pairwise-disjoint in the1063

plane, and we denote by ρ the projection of the union of the fragments of P onto the surface1064

S.1065

Given a fragment f ∈ F , we consider immersed disks (D,φ) such that the center of D1066

belongs to f and φ agrees with ρ on D ∩ f . Every immersed disk we consider is like that,1067

without further mention. Consider the union U of the disks D over the immersed disks1068

(D,φ). For every two immersed disks (D0, φ0) and (D1, φ1) the maps φ0 and φ1 agree on1069

D0 ∩ D1. So there is a covering map φU : U → S that agrees with φ for every immersed1070

disk (D,φ). Of particular interest to us is the set Vf (∞) := φ−1
U (V ). Indeed the intersection1071

with f of the classical plane Voronoi diagram of Vf (∞) projects via ρ to the part of the1072

Voronoi diagram of (S, V ) that lies in ρ(f). Thus computing the sets Vf (∞) for all f ∈ F1073

will immediately yield the Voronoi diagram of (S, V ). One gets the following bound on their1074

sizes:1075

▶ Lemma 36. For every f ∈ F at most O(nh) points belong to Vf (∞).1076

Proof. We call regions the following subsets of S: a vertex of C(P ), the relative interior of1077

an edge of C(P ), and a (open) face of C(P ). The regions partition S. For every shortest1078

path p between a point x ∈ S and the set V , record the sequence of regions intersected by1079

p when directed from V to x. If two such paths p and p′ end in ρ(f) and have the same1080

sequence then they correspond to the same point in Vf (∞). We claim that for every region1081

R there are O(nh) sequences ending with R. This claim implies the lemma. Let us prove the1082

claim. A sequence is maximal if it is not a strict prefix of an other sequence. A sequence is1083

critical if it is the maximal common prefix of two distinct maximal sequences. Every critical1084

sequence ends with a face of C(P ). For every face R′ of C(P ) there is at most one critical1085

sequence ending with R′. Indeed every critical sequence is realized by two distinct paths. If1086

two distinct critical sequences were to end with R′, then at least two of the four associated1087

paths would cross, and thus could be shortened, a contradiction. We proved that there are1088

O(n) critical sequences. So there are O(n) maximal sequences. And every sequence contains1089

O(h) occurrences of R since P is O(h)-happy. That proves the claim, and the lemma. ◀1090

The key idea for computing those sets is to make the disks grow with time. More precisely1091

to consider, for every t ≥ 0, the following set Vf (t) of points of R2. The set Vf (0) contains1092

the vertices of f that correspond to points of V . If t > 0 then Vf (t) is the union of the sets1093

φ−1(V ) over the immersed disks (D,φ) such that the radius of D is smaller than or equal1094
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to t. As t increases new points may appear in Vf (t), no point disappears, and the maximal1095

value of Vf (t) is Vf (∞). The evolution of Vf is a discrete finite process, with a finite number1096

of dates t at which new points appear in Vf (t) (ρ(f) being a closed subset of S).1097

We now provide the algorithm. In the following, given a finite non-empty set Y ⊂ R2
1098

and y ∈ Y , we denote by V or(y, Y ) the closed cell of y in the plane Voronoi diagram of1099

Y . The data structure maintains for every f ∈ F a set Xf of points of R2 (in which we1100

shall put the points appearing in Vf ). Central to the algorithm is the notion of candidate1101

event. If f ∈ F , and if s is a side of f matched to a side s′ of some f ′ ∈ F , then there1102

is an orientation-preserving isometry of the plane τ that maps s to s′ and puts τ(f) and1103

f ′ side by side. Now assume that there is x ∈ Xf such that τ(x) /∈ Xf ′ . Further assume1104

that V or(x,Xf ) ∩ s ̸= ∅, and let t be the distance between x and V or(x,Xf ) ∩ s. Then1105

(t, f ′, s′, τ(x)) is a candidate event whose date is t. The algorithm is the following. For every1106

f ∈ F initialize Xf with the vertices of f corresponding to points of V , if any. Then, as1107

long as there is a candidate event, consider any candidate event (t, f, s, x) of smallest date t,1108

insert x in Xf , and repeat (after updating the set of candidate events). We shall detail how1109

to compute a candidate event of smallest date, or to assert that there is no candidate event.1110

But first we prove:1111

▶ Lemma 37. The wave algorithm terminates. In the end Xf = Vf (∞) for every f ∈ F .1112

Proof. Consider the following invariant: there is t > 0 such that for every f ∈ F the set Xf1113

contains all the points appearing in Vf at a date strictly smaller than t, and every other1114

point of Xf appears in Vf at date t. The invariant holds after the initialization phase of the1115

algorithm. Assume that it holds at the beginning of an iteration of the loop. This invariant1116

implies the Property (P) that for every f ∈ F , if a point y ∈ f is at distance t′ ≥ 0 from Xf ,1117

then the distance between ρ(y) and V in S is smaller than or equal to t′; For otherwise y1118

would be at distance greater than t′ from Vf (∞), and thus at distance greater than t′ from1119

Xf since Xf ⊆ Vf (∞) by the invariant, a contradiction. So if there is a candidate event1120

(t′, f, s, x) with t′ ≤ t, then t′ = t and x appears in Vf at the date t. In the other direction1121

assume that there are f ∈ F and x /∈ Xf that appears at date t in Vf . We claim that there is1122

a candidate event whose date is smaller than or equal to t (and thus equal to t by preceding).1123

This claim implies that the invariant holds at the end of the iteration, and that the algorithm1124

does not stop until Xf = Vf (∞) for all f ∈ F , which proves the lemma.1125

Let us now prove the claim. There are a point y on the boundary of f and an immersed1126

disk (D,φ) centered at y, of radius t, such that x ∈ φ−1(V ). There are two cases. First1127

assume that y lies in the relative interior of a side s of f . Then s is matched to a side s′
1128

of f ′ for some f ′ ∈ F . Let τ : R2 → R2 be the orientation-preserving isometry that maps s1129

to s′ and puts τ(f) and f ′ side by side. Then τ(x) appears in Vf ′ at a date t′ < t. And so1130

τ(x) ∈ Xf ′ by our invariant. Moreover τ(y) is at distance greater than or equal to t from Xf ′1131

by Property (P). So the distance between τ(y) and Xf ′ is t, the distance between τ(y) and1132

τ(x). We proved that in the plane Voronoi diagram of Xf ′ the closed cell of τ(x) intersects1133

s′ in τ(y) (at least), which implies the claim in this case.1134

Now assume that y is a vertex of f . Then ρ(y) is a vertex of C(P ), and it is a flat point of1135

S since t > 0. Consider the k ≥ 2 directed edges emanating from ρ(y) in C(P ), and lift them1136

in the plane by straight line segments s0, . . . , sk−1 emanating from y. For every i consider1137

the corner α between si and si+1, indices are modulo k. Then α corresponds to a corner β of1138

some f ∈ F . Let τ : R2 → R2 be the plane isometry that maps β to α, and let Xi := τ(Xf ).1139

There is i such that x ∈ Xi and x /∈ Xi+1. The distance between y and Xi is greater than or1140

equal to t by Property (P), so it is equal to t, the distance between y and x. We proved that1141
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in the plane Voronoi diagram of Xi the closed cell of x intersects the segment si in y (at1142

least), which implies the claim, and the lemma. ◀1143

All there remains to do is to detail how to compute a candidate event of smallest date, or1144

to assert that there is no candidate event. That can be done naively in time polynomial in n1145

and h. However, to gain efficiency, we shall maintain the list of candidate events sorted by1146

date (implemented with a balanced search tree). For that we consider the following setting.1147

Consider a closed segment of positive length s in R2 (such as the side of some f ∈ F ) and1148

a list of k ≥ 1 points z1, . . . , zk ∈ R2 (such as the points to be inserted in Xf in order of1149

insertion). For every 0 ≤ i ≤ k let Zi = {z0, . . . , zi}. We shall maintain in an online manner1150

after each insertion of a point zi, 1 ≤ i ≤ k, the sets V or(y, Zi) ∩ s, y ∈ Zi. For that let Ui1151

contain the points y ∈ Zi−1 that require an update when inserting zi, equivalently, such that1152

V or(y, Zi−1) ∩ s ̸= V or(y, Zi) ∩ s. Then:1153

▶ Lemma 38. The sum over 1 ≤ i ≤ k of the cardinality of the set Ui is smaller than or1154

equal to 5k.1155

Proof. Let 1 ≤ i ≤ k. We prove the lemma by proving that at most four points y ∈ Ui are1156

such that V or(y, Zi) ∩ s ̸= ∅. Let s′ ⊆ s contain the points strictly closer to zi than to Zi−1.1157

Then V or(y, Zi−1) ∩ s contains a point in s′ and a point not in s′. Also V or(y, Zi−1) and s′
1158

are intervals, and s′ is open in the topology of s (note that s′ may contain endpoints of s).1159

So there is an arbitrarily small open interval s′′ ⊂ V or(y, Zi−1) ∩ s′ that shares one of its1160

endpoints with s′. There at most two points y ∈ Zi−1 such that s′′ ⊂ V or(y, Zi−1), and that1161

there are two such ends s′′ of s′. That proves the lemma. ◀1162

▶ Lemma 39. There is an online algorithm to which we give the points z1, . . . , zk in this1163

order, that after receiving zi, 1 ≤ i ≤ k, returns Ui and V or(y, Zi) ∩ s for all y ∈ Ui ∪ {zi},1164

and runs in O(k log k) total time.1165

Proof. Let 1 ≤ i ≤ k. There is a partition of s into points an open intervals such that1166

for every y ∈ Zi−1 the set V or(y, Zi−1) ∩ s is the closure of one of the partition sets. We1167

maintain the list of tuples (y, V or(y, Zi−1) ∩ s) over y ∈ Zi−1 ordered by the position of1168

V or(y, Zi−1) ∩ s along s (after directing s arbitrarily, and ordering arbitrarily any two1169

points y ̸= y′ ∈ Zi−1 for which V or(y, Zi−1) ∩ s = V or(y′, Zi−1) ∩ s). Given such a tuple1170

(y, V or(y, Zi−1) ∩ s) we can determine in constant time whether y ∈ Ui by checking whether1171

there is a point of V or(y, Zi−1) ∩ s strictly closer to zi than to y. If y /∈ Ui, then we can,1172

again in constant time, either correctly assert that all the tuples (y′, V or(y′, Zi−1) ∩ s) before1173

(y, V or(y, Zi−1) ∩ s) in the list are such that y′ /∈ Ui, or correctly correctly assert that all the1174

tuples after (y, V or(y, Zi−1) ∩ s) are like that. So we can list by dichotomy the k′ ≥ 0 tuples1175

(y, V or(y, Zi−1) ∩ s) such that y ∈ Ui in O(k′ + log k) time. For every y ∈ Ui we compute1176

V or(y, Zi) ∩ s, and we update the list of tuples accordingly, in O(log k) time per point, so in1177

O(k′ log k) total time. We compute V or(zi, Zi) ∩ s in O(log k) time by finding by dichotomy1178

the first and last tuples (y, V or(y, Zi−1) ∩ s) such that V or(y, Zi−1) ∩ s contains a point1179

whose distance to y is greater than or equal to its distance to zi, if any. That proves the1180

lemma. ◀1181

Proof of Lemma 35. The wave algorithm never inserts a point in a set Xf , f ∈ F , that was1182

already there before. So the algorithm terminates after O(n2h) insertions by Lemma 36 and1183

Lemma 37. In the end the plane Voronoi diagram of Xf projects via ρ to the part of the1184

Voronoi diagram of (S, V ) that lies in ρ(f). All those diagrams can be computed in O∗(n2h)1185

total time with classical algorithms. Cutting the fragments of P along those diagrams,1186
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and triangulating the fragments that are not triangles, provides the desired portalgon P ′.1187

To compute a candidate event of smallest date, or to correctly determine that there is no1188

candidate event, we maintain the list of candidate events sorted by date. We update this list1189

when inserting a point x in a set Xf , in amortized time O(log(nh)) per insertion, as follows.1190

First, the k ≥ 0 candidate events of the form (·, f, ·, x) must all be deleted. This is done1191

in time O((k + 1) log(nh)) by maintaining a second list of the candidate events sorted by1192

the position of their point (lexicographic order on its coordinates, say). All but O(log(nh))1193

of the time spent is amortized by the fact that every event deleted here was created earlier1194

in the execution of the algorithm. Second, consider a side s of f , matched to a side s′ of1195

some f ′ ∈ F , and let τ : R2 → R2 be the orientation-preserving isometry that maps s to s′
1196

and puts τ(f) and f ′ side by side. Among the candidate events of the form (·, f ′, s′, τ(y)),1197

y ∈ Xf , those for which V or(y,Xf ∪ {x}) ∩ s ̸= V or(y,Xf ) ∩ s may have to updated. If1198

V or(y,Xf ∪ {x}) ∩ s = ∅, then the event must be deleted. Otherwise, only the date of the1199

event may change. This is done with Lemma 39. The lemma also provides us with the1200

set V or(x,Xf ∪ {x}) ∩ s. If this set is not empty, and if τ(x) /∈ Xf ′ , then we create the1201

corresponding event, and we insert it in our lists in O(lognh) time. ◀1202

G.4 The duality between the Delaunay tessellation and the Voronoi1203

diagram1204

We now describe the duality between the Delaunay portalgon D and the Voronoi diagram1205

V of (S, V ). Let (D,φ) be the maxi-disk of a point x ∈ S. If the convex hull of φ−1(V )1206

projects via φ to the closure of a face f of D, then we say that x is dual to f .1207

▶ Lemma 40. The duality relation is a one-to-one correspondence between the vertices of V1208

and the faces of D.1209

Proof. Let x ∈ S. Let (D,φ) be the maxi-disk of x, and let m be the number of points in1210

φ−1(V ). The convex hull of φ−1(V ) projects via φ to the closure of a face of D if and only if1211

m ≥ 3. And we already proved that m ≥ 3 if and only if x is a vertex of V . Every face of D1212

can be obtained from a vertex of V in this way by definition of the Delaunay tessellation.1213

And distinct vertices of V project to distinct faces of D for otherwise they would have the1214

same maxi-disk. ◀1215

Let v be a vertex of V, dual to a face f of D. We call side of f any directed edge of D1216

that sees f on its left. We now relate the directed edges emanating from v to the sides of1217

f . Let (D,φ) be the maxi-disk of v. Let v⋆ be the center of D, and let y0, . . . , ym−1 be the1218

m ≥ 3 points of φ−1(V ). In the plane the classical Voronoi diagram of φ−1(V ) is made of m1219

geodesic rays r0, . . . , rm−1 emanating from v⋆, so that r0, y0, . . . , rm−1, ym−1 are in clockwise1220

order around v⋆. There is an open ball O ⊂ D on which φ is injective, containing v⋆, such1221

that within O the rays r0, . . . , rm−1 correspond via φ to the directed edges e0, . . . , em−11222

emanating from v in V. For every i the geodesic path from yi to yi+1 corresponds via φ1223

to a side e′
i of f , indices are modulo m. We say that ei and e′

i are dual. This duality is a1224

one-to-one correspondence that maps the cyclic order of directed edges emanating from v1225

around v to the cyclic order of sides of f along the boundary of f .1226

▶ Lemma 41. If a directed edge e0 of V is dual to a directed edge e′
0 of D, then the reversal1227

of e0 is dual to the reversal of e′
0.1228

Proof. Let e′
1 be the reversal of e′

0, and let e1 be the dual of e′
1. We shall prove that e1 is1229

the reversal of e0. Consider the maxi-disks (D0, φ0) and (D1, φ1) of the base-vertices of e01230
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and e1, and realize them so that they agree on the geodesic segment p that is the pre-image1231

of the common edge of e′
0 and e′

1. Then φ0 and φ1 agree on D0 ∩D1, so they agree with a1232

common map φ0 ∪ φ1 : D0 ∪D1 → S. Let q be the geodesic segment between the centers of1233

D0 and D1. Then q is contained in D0 ∪D1, and projects via φ0 ∪ φ1 to the common edge1234

of e0 and e1 in V . Indeed for every point x⋆ in the relative interior of q the maxi-disk (D,φ)1235

of φ(x⋆) can be realized so that x⋆ is the center of D, and so that φ agrees with φ0 ∪ φ1 on1236

D ∩ (D0 ∪D1). Then φ−1(V ) contains exactly the two endpoints of p, and so φ(x⋆) belongs1237

to the relative interior of an edge of V. ◀1238

Note that the vertices of V do not necessarily belong to their dual faces in D, and that1239

dual edges do not necessarily cross.1240

G.5 Computing the canonical portalgon: proof of Proposition 201241

In this section we prove Theorem 20. As a preliminary we need a definition and a lemma.1242

Let W be a walk in the dual of some triangulation M . To ease the reading assume that1243

in M every edge is incident to two distinct faces. The following definition extends in a1244

straightforward manner to general triangulations. In the plane realize the k ≥ 1 faces visited1245

by W isometrically, and respecting their orientation, by respective triangles U1, . . . , Uk. Make1246

sure that for every 1 ≤ i < k the triangles Ui and Ui+1 agree on the placement of the i-th1247

edge of M crossed by W . The resulting sequence U = (U1, . . . , Uk) is an unfolding of W .1248

In general a vertex of M may have several occurrences among the vertices of the triangles in1249

U , and those occurrences may be at distinct points in the plane. Yet:1250

▶ Lemma 42. Let V be the Voronoi diagram of (S, V ). Let F be a face of V. There is a1251

unique point w ∈ F ∩ V . Let U be an unfolding of a walk in the dual of some triangulation1252

of F . In U all occurrences of w are at the same point.1253

Proof. Our first claim is that F is simply connected, and that F ∩ V contains a single point1254

w. To prove the claim first consider a point x ∈ F . There is a unique shortest path p from x1255

to V . Then p is disjoint from V . So the endpoint of p belongs to F . That proves F ∩ V ̸= ∅.1256

Now consider the universal covering space F̃ of F . Then F̃ does not contain two distinct1257

lifts of points of V . For otherwise let Ṽ contain the lifts of the points of V in F̃ . There is a1258

point x̃ ∈ F̃ whose distance to Ṽ is realized by two distinct paths. And x̃ lifts a point of V,1259

a contradiction. That proves the first claim.1260

Our second claim is that around any vertex v of V the angles between consecutive edges1261

are all smaller than or equal to π. Indeed let (D,φ) be the maxi-disk of v. Let v⋆ be the1262

center of D. Let X be the Voronoi diagram of φ−1(V ) in the plane. The faces of X are1263

all convex, being intersections of half-planes. So the angles between consecutive rays of X1264

around v⋆ are all smaller than or equal to π. There is an open disk O on which φ is injective,1265

containing v⋆, such that φ(X ∩O) = V ∩ φ(O). That proves the second claim.1266

The first claim implies that F is homeomorphic to an open disk since F is not homeo-1267

morphic to a sphere. It also implies that F has no curved point except possibly w since V1268

contains all curved points of S. Let F̂ be the surface homeomorphic to a closed disk obtained1269

by cutting the closure of F along the boundary of F . The second claim implies that the1270

angles at the corners of F̂ are smaller than or equal to π. So the shortest paths between1271

those corners and w are, together with the boundary edges of F̂ , the edges of a triangulation1272

N of F̂ . The dual of N is a cycle, and w is the central vertex of N . If U is an unfolding of1273

a dual walk of N , then all occurrences of w in U are at the same point in the plane. That1274

easily extends to every other triangulation M of F̂ from the fact that there is a triangulation1275
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R that is a refinement of both M and N , in the sense that the 1-skeleton of R contains1276

subdivisions of the 1-skeletons of M and N . ◀1277

Proof of Theorem 20. Apply Lemma 35 to replace P in O∗(n2h) time by a triangular1278

portalgon P ′ of S with O(n2h) fragments, and to compute a subgraph V of C(P ′) such that1279

V is the Voronoi diagram of (S, V ). Cutting S along the Delaunay tessellation of (S, V ) gives1280

the canonical portalgon Q. We now describe how to compute Q from V.1281

First we build the combinatorics of Q as follows. For every vertex v of V create a fragment1282

f in Q whose number of sides equals the degree of v. Identify the sides of f with the1283

directed edges of V emanating from v, in order. For every edge e of V the two directions of e1284

correspond to two distinct sides of fragments of Q (possibly of the same fragment), identify1285

those two sides. This is correct by Lemma 40 and Lemma 41.1286

There remains to show how to realize in the plane the face f of Q dual to a given vertex1287

v of V, and to identify the m ≥ 3 sides of f to the directed edges e0, . . . , em−1 emanating1288

from v in V. Recall that in the maxi-disk (D,φ) of v the points of φ−1(V ) can be listed as1289

y0, . . . , ym−1 so that for every i the geodesic segment from yi to yi+1 projects to the side of1290

f dual to ei, indices are modulo m. The issue is that we do not have access to (D,φ). Yet1291

we can compute the points y0, . . . , ym−1 as follows. Realize v by an arbitrary point v⋆ in the1292

plane, and realize the faces of C(P ′) incident to v isometrically around v⋆ in the plane. This1293

is possible since v is flat. Without loss of generality the center of D is v⋆, and φ agrees with1294

the realization of the faces around v⋆. Let F0, . . . , Fm−1 be the faces of V occurring around1295

v, so that each face Fi is in-between the directed edges ei and ei+1 around v. Note that each1296

face of V may contain several faces of C(P ′), and may occur several times around v. For1297

every i the face Fi contains a single point wi ∈ V by Lemma 42. Consider a walk W in the1298

dual of C(P ′) ∩ Fi that starts with a face W0 incident to v, and visits a face incident to wi.1299

Unfold the faces visited by W in the plane, starting from the realization of W0 around v⋆.1300

Let w⋆
i be some arbitrary occurrence of wi in the unfolding. Then w⋆

i does not depend on1301

W nor on the choice of the ocurrence of wi in the unfolding by Lemma 42. We claim that1302

w⋆
i = yi. To prove this claim we show that yi can also be obtained as an occurence of wi in1303

such an unfolding of a walk in the dual of C(P ′) ∩ Fi. Indeed the geodesic path p from v⋆
1304

to yi projects via φ to a shortest path from v to V . And φ ◦ p immediately enters Fi after1305

leaving v. So φ ◦ p is relatively included in Fi, and thus ends at wi. By slightly perturbing p1306

without changing its endpoints we may ensure that φ ◦ p corresponds to a walk in the dual1307

of C(P ′) ∩ Fi, which is as desired. That proves the claim.1308

Achieving the claimed running time requires a last technicality. Consider a face F of V,1309

containing a point w ∈ V . Recall that for some faces W0 of C(P ′) ∩F we need to construct a1310

dual walk W from W0 to w, unfold W , and retain the relative positions of some occurences1311

of W0 and w in the unfolding. Doing so independently for every face W0 of C(P ′) ∩ F may1312

take too long as we would visit faces of C(P ′) several times. Instead we consider a single1313

spanning tree Y in the dual of C(P ′) ∩ F , we unfold the faces of C(P ′) ∩ F along Y , and we1314

retrieve all the required information from the unfolding. (Note that the choice of Y does not1315

matter, and that the unfolding may overlap). Doing that in every face F of V takes O(n2h)1316

time in total since P ′ has O(n2h) fragments. ◀1317
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