Algorithms for Topological and Metric Surfaces

Computational Geometry

Design algorithms for geometric problems

This thesis

Focus on surfaces

Topology

image by Crane and Segerman

Topological Surfaces

4

Topological Surfaces

Metrics on surfaces

Untangling Graphs

Computing Delaunay Triangulations

Other works and conclusion

Untangling Graphs

Computing Delaunay Triangulations

Other works and conclusion

Input:

Goal: remove all crossings by deforming f

Output: Yes (+ untangled drawing) or No

We obtain the first polynomial time algorithms for this problem

Output: Yes (+ untangled drawing) or No

Yes:

No

No

Related works

We focus on surfaces without boundary of genus ≥ 2

Related problem: making curves cross minimally

Input: closed curves on a surface

Goal:

minimize the # crossings by deforming the curves

Output: min # of crossings (+ optimal curves)

Many works related to m	naking curves cross minimally!
Poincaré, 1905	de Graaf and Schrijver, 1987
Dehn, 1911	Dynnikov, 2002
Dehn, 1912	Paterson, 2002
Reinhart, 1962	Gonçalves et al., 2005
Zieschang, 1965	Schaefer et al., 2008
Chillingworth, 1969	Lazarus and Rivaud, 2012
Zieschang, 1969	Erickson and Whittlesey, 2013
Chillingworth, 1971	Arettines, 2015
Turaev, 1979	Chang et al., 2018
Birman and Series, 1984	Despré and Lazarus, 2019
Cohen and Lustig, 1984	Fulek and Tóth 2020

Conen and Lustig, 1904 Fulek and Loth, 2020 Hass and Scott, 1985 Chang and de Mesmay, 2022

Lustig, 1987

Lackenby, 2024

Method for making curves cross minimally

Poincaré, 1905

- 1. give special shape to surface
- 2. straighten the curves

The special shape

negative curvature:

image by Susan Lombardo

almost all surfaces can be curved negatively

On a negatively curved surface,

straight curves cross minimally

(does not hold on all surfaces)

On a negatively curved surface,

straight curves cross minimally

On a negatively curved surface,

straight curves cross minimally

On a negatively curved surface,

straight curves cross minimally

On a negatively curved surface,

straight curves cross minimally

ever into

On a negatively curved surface,

straight curves cross minimally — every patients a unit

On a negatively curved surface,

straight curves cross minimally — every path can be into a unique strai

On a negatively curved surface,

on a negativery curved surface,

ht curves cross minimally — every path can be deformed into a unique straight pa

On a negatively curved surface,

cross minimally

On a negatively curved surface,

 $\text{inimally} \mid \longleftarrow$

every path can be deformed into a unique straight path

On a negatively curved surface,

every path can be deformed into a unique straight path

On a negatively curved surface,

every path can be deformed into a unique straight path

Discrete model of negatively curved surfaces?

Lazarus and Rivaud, 2012 Erickson and Whittlesey, 2013

System of quads

Despré and Lazarus, 2019

What about untangling graphs?

Tutte, 1963

Y. Colin de Verdière, 1991

Tutte, 1963

Y. Colin de Verdière, 1991

Tutte, 1963

Y. Colin de Verdière, 1991

make edges straight

Tutte, 1963

Y. Colin de Verdière, 1991

make edges straight

Tutte, 1963

Y. Colin de Verdière, 1991

make edges straight make vertices barycentric

Tutte, 1963

Y. Colin de Verdière, 1991

make edges straight make vertices barycentric

Tutte, 1963

Y. Colin de Verdière, 1991

make edges straight make vertices barycentric

edges straight vertices barycentric

Tutte embeddings

edges straight vertices barycentric

Summary

Our results

A new tool:

Reducing triangulations

Reducing triangulations

dual is bipartite and every vertex has degree $\geq 6^*$ *sometimes 8

Reduced walks

Properties of reduced walks

every walk can be deformed into a unique reduced walk, computable in linear time

reduced walks are stable upon reversal and subwalk

Purpose of the coloring

Reducing a walk

Reducing a walk

Reducing a walk

Reducing a walk

Reducing a walk

genus 2

82

Untangling graphs using reducing triangulations

take topological polygons...

take topological polygons... ...possibly with holes

... and a graph H on it₈₆

Output

weak embedding: drawing f' that can be untangled by infinitesimal perturbation

Akitaya, Fulek, and Tóth, 2019

algo to determine if f' is weak embedding, and if so to perturb f'

Result

n: # times f uses an edge or vertex of H

m: # vertices and edges of H

s: genus + # holes

Colin de Verdière, Despré, D., 2023

We can decide if f can be untangled, in $O(m + s^2 n \log(s n))$ time. If so, we can compute a weak embedding homotopic to f in additional $O(s^2 m n^2)$ time.

Algorithm overview

(assuming that the surface has no boundary)

First attempt: reduce the loops, vertex fixed

First attempt: reduce the loops, vertex fixed

Problem:

Solution:

1. Reduce 1 loop cyclically

2. Reduce the other loops linearly

A straightened loop graph is a weak embedding or cannot be untangled

1. Reduce 1 loop cyclically

2. Reduce the other loops linearly

(connected, say)

contract the spanning tree

contract the spanning tree

contract and bundle the other edges when possible

contract and bundle the other edges when possible

contract and bundle the other edges when possible

consider the associated loop graph

consider the associated loop graph

straighten the loop graph

straighten the loop graph

forget about the loop graph

forget about the loop graph

A straightened graph is a weak embedding or cannot be untangled

A straightened graph is a weak embedding or cannot be untangled (+ tricks and data structures for achieving the announced time complexities)

Discrete analogue of Tutte embeddings

Recall: Tutte embeddings

edges straight and

Harmonious drawings

$$f(v) \in \partial H$$

$$\Longrightarrow$$

$$\exists e \ f(e) \text{ escapes } H$$

$$f(v) \in \partial H$$

$$\Longrightarrow$$

$$\exists W \ f \circ W \text{ escapes } H$$

where to escape depends on the coloring

this definition generalizes to surfaces

Results

graph Greducing triangulation T with m edges $f: G \to T^1$ of size n

Definition of harmonious drawings

f harmonious and f can be untangled $\Rightarrow f$ weak embedding

Algo to make f harmonious in $O((m+n)^2n^2)$ time, without increasing any edge length

Harmonizing a drawing

1 we define monotonic moves to apply to f

some moves do not seem to decrease any potential so we combine the moves carefully

Making curves cross minimally

Related work

closed walks of total length n on a graph of size m

Despré, Lazarus, 2019

- Put a single curve in minimal position in $O(m + n^4)$ time
- Compute the min. nb. of crossings in $O(m + n^2)$ time

Result

closed walks of total length n on a graph of size m

simpler algos and proofs! $m^3n + mn \log(mn)$

D., 2024

- Put a single curve in minimal position in $O(m+n^4)$ time
- Compute the min. nb. of crossings in $O(m+n^2)$ time

$$m^2 + mn \log(mn)$$

Untangling Graphs

Computing Delaunay Triangulations

Other works and conclusion

Untangling Graphs

Computing Delaunay Triangulations

Other works and conclusion

Triangulations of polyhedral surfaces

Triangulation of polyhedral surface

Triangulation of polyhedral surface

Triangulation of polyhedral surface

Triangulation vs. Mesh

Every mesh gives a triangulation

Every mesh gives a triangulation but converse is false!

Types of points on the surface

Problem

Delaunay triangulation

triangulation in which every edge is Delaunay

The Delaunay triangulation

Generically, every surface has a unique
Delaunay triangulation
whose vertices are the singularities

The Delaunay triangulation

Generically, every surface has a unique
Delaunay triangulation
whose vertices are the singularities

Problem

Given triangulation T, compute "the" Delaunay triangulation of the surface of T

Motivations

Motivations

• isometry testing

Motivations

- isometry testing
- shortest paths

• shortest paths

Shortest paths on meshes

On a mesh M with n triangles...

a shortest path cannot cross an edge twice

 \rightarrow shortest path can be computed in O(f(n)) time

Mitchel, Mount, Papadimitriou, 1987

Shortest paths on triangulations

they can cross edges arbitrarily many times

Erickson, 2006

Shortest paths on triangulations

Löffler, Ophelders, Staals, Silveira, 2023

happiness h: max number of times a shortest path visits a triangle

 \rightarrow shortest path can be computed in O(f(n,h)) time

Shortest paths on triangulations

Löffler, Ophelders, Staals, Silveira, 2023

Delaunay triangulations have happiness O(1)

aspect ratio =

maximum side length
minimum height

D. 2025

Given triangulation T of n triangles, of aspect ratio r, whose surface has no boundary, we can compute Delaunay in $O(n^3 \log^2(n) \cdot \log^4(r))$ time

aspect ratio = maximum side length minimum height

Previous algorithms (Delaunay flips and Voronoi) achieved no better than O(Poly(n, r)) $\overline{\text{angles, of aspect ratio } r}$, surface has no boundary, we can compute

Delaunay in $O(n^3 \log^2(n) \cdot \log^4(r))$ time

aspect ratio = maximum side length minimum height Previous algorithms (Delaunay fling and Voronoi)
achieved no better than O(F)achieved no better than O(F)bound!

Delaunay in $O(n^3 \log^2(n))$

Algorithm overview

Classical method

compute the Voronoi diagram by propagating waves

then derive Delaunay from it

D. 2025 $T - \frac{\text{lower}}{\text{happiness}} - T' - \frac{\text{compute classically}}{\text{from Voronoi}} - \text{Delaunay}$

Simplification algorithm

Tuned combination of elementary operations, like inserting vertices in edges inserting edges in faces deleting vertices repeated many times

some simplify the geometry, others decrease # vertices

Analysis

Show that during execution:

- 1. # vertices stays bounded
- 2. Geometry gets simpler and simpler

Enclosure

Lower bound

Lower bound

Input

Input

Input

Input

Input

Input

No Real RAM algo can compute Delaunay from x in $o(\log x)$ time

Input

No Real RAM algo can compute Delaunay from x in $o(\log x)$ time

 \hookrightarrow Otherwise we could compute |x| from x in $o(\log x)$ time

 \hookrightarrow Otherwise we could compute $\lfloor x \rfloor$ from x in $o(\log x)$ time

Untangling Graphs

Computing Delaunay Triangulations

Other works and conclusion

Untangling Graphs

Computing Delaunay Triangulations

Other works and conclusion

Delaunay flip:

Algorithm:

apply Delaunay flips greedily as long as you can

Delaunay flip:

Algorithm:

apply Delaunay flips greedily as long as you can

→ terminates and outputs a Delaunay triangulation

198

Result

D., 2022-23

Upper bound for # Delaunay flips on flat tori,
tight up to constant factor

 $(2\pi \text{ around each vertex})$

Other results

Despré, D., Pouget, and Teillaud, 2025

package for computing with hyperbolic surfaces

Ot Exact computations! Despré, D., Pouget, and Tel

hyperbolic surfaces

Delaunay flip

Triangulated hyperbolic surface

generation (genus 2 only)

visualization

Triangulated hyperbolic surface

Combinatorics

Triangulated hyperbolic surface

Geometry

• each edge is decorated with a complex number (cross ratio)

Possible continuations

- generation of hyperbolic surfaces of genus ≥ 3
- what is the complexity of Delaunay flips algo?
- certifying that a drawing cannot be untangled
- untangling by homotopy moves
- extension to non orientable surfaces
- what is the complexity of untangling?
- minimizing crossings of graphs by homotopy
- how unique reducing triangulations are?