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Computational Geometry

Design algorithms for geometric problems

This thesis

Focus on surfaces
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Topological Surtaces
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Only orientable surfaces today !




Metrics on surfaces
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Untangling Graphs

Computing Delaunay Triangulations

Other works and conclusion
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Problem: untangling graphs

Input:

map f

Surface\

osraph

Goal: remove all crossings by deforming f
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Problem: untangling graphs




Problem: untangling graphs




Problem: untangling graphs

Output: Yes (+ untangled drawing) or No
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Problem: untangling graphs

We obtain the first polynomial time
algorithms for this problem

Output: Yes (+ untangled drawing) or No
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No
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Related works



We tfocus on surfaces without boundary
of genus > 2

I
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Related problem:
making curves cross minimally

Input: closed curves on a surface

Goal:
minimize the # crossings by deforming the curves
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Output: min # of crossings (4 optimal curves)
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Many works related to making curves cross minimally!
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Erickson and Whittlesey, 2013
Arettines, 2015

Chang et al., 2018
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Lackenby, 2024
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Method for making curves cross minimally

J5 = =9 =9

1. give special shape to surface

2. straighten the curves
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The special shape

negative curvature:

image by Susan Lombardo

almost all surfaces
can be curved negatively
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The key property

On a negatively curved surface,

straight curves cross minimally

(does not hold
on all surfaces)




The key property

On a negatively curved surface,

curves cross minimally
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The key property

On a negatively curved surface,

straight curves cross minimally

7

A~
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The key property

On a negatively curved surface,

curves cross minimally

36



The key property

On a negatively curved surface,

curves cross minimally

ever
into
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The key property

On a negatively curved surtace,

curves cross minimally every pat
Into a un:
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The key property

On a negatively curved surtace,

curves cross minimally

every path can be
into a unique

39



The key property

On a negatively curved surtace,

curves cross minimally every path can be deforr
into a unique pa
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The key property

On a negatively curved surtace,

cross minimally

every path can be deformed
into a unique path

41



nimally

The key property

On a negatively curved surface,

every path can be deformed
into a unique path
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The key property

On a negatively curved surface,

every path can be deformed
into a unique path
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The key property

On a negatively curved surface,

every path can be deformed
into a unique straight path

D=
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Discrete model of negatively
curved surfaces”’



System of quads
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Algo for making curves cross minimally
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Algo for making curves cross minimally

[V

\2
straighten |
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Algo for making curves cross minimally

pblm: straight walks
are not unique

J | A

~
straighten
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Algo for making curves cross minimally
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What about
untangling graphs?’



Method for untangling graphs



Method for untangling graphs

Tutte, 1963 Y. Colin de Verdiere, 1991

%
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Method for untangling graphs

%\r make edges straight
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Method for untangling graphs

E i. .~ make edges straight



Method for untangling graphs

make edges straight
make vertices barycentric
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Method for untangling graphs

make edges straight
make vertices barycentric
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Method for untangling graphs

make edges straight
make vertices barycentric

A =<
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edges straight
vertices barycentric

Sy
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Tutte embeddings

edges straight
vertices barycentric

N =X
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Summary

Curves ; Graphs
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Curves




A new tool:
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Reducing triangulations

dual is bipartite and
every vertex has degree > 6™

A%A VS %

AVAVA '
AVAVAVA
AVAVAVAVA

AvAVAVAVAVA *sometimes 8




Reduced walks
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Properties ot reduced walks

every walk can be deformed into a unique
reduced walk, computable in linear time

e s

reduced walks are stable upon
reversal and subwalk
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Purpose of the coloring
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Reducing a walk
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Reducing a walk
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Reducing a walk
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Reducing a walk
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Reducing a walk

<>
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+ specific data

1

structure
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Constructing reducing triangulations
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Constructing reducing triangulations




Constructing reducing triangulations
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Constructing reducing triangulations

genus 2
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Constructing reducing triangulations

genus 2 genus 3
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Constructing reducing triangulations

genus 2 genus 3 genus 4
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Constructing reducing triangulations

genus 2 genus 3 genus 4

then subdivide at will: A —> AAA —> A
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Untangling graphs using
reducing triangulations



take topological
polygons. . .

Input

L
AVA4
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Input

take topological
polygons. . . B
'

... possibly with holes




glue edges
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Input

that encodes the surface. ..

...and a graph H on it



Input
43 G

draw G in H )/ f\

v

(2]

H

D




In this model overlaps
are unavoidable

=X
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Output

weak embedding: drawing f’ that can be untangled
by infinitesimal perturbation

/'__7\ algo to determine if

f" is weak embedding,

\1 j_—b_/ and if so to perturb f’
= =
/
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n : # times f uses an edge
or vertex of H

m : # vertices and edges of H
s : genus + # holes
Colin de Verdiere, Despré, D., 2023

We can decide if f can be untangled,
in O(m + s*nlog(sn)) time.
If so, we can compute a weak embedding homotopic
to f in additional O(s%*m n°) time.
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Algorithm overview

(assuming that the surface has no boundary)

EIS S

—

straighten
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Straightening a graph






Straightening a loop graph

First attempt: reduce the loops, vertex fixed
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Straightening a loop graph

vertex fixed

Problem:
- S

C — — vertex must move
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Straightening a loop graph

Solution:

(= x> >
1. Reduce 1 loop cyclically 2. Reduce the other loops linearly
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Straichtening a loop eraph

A straightened loop graph is a weak embedding
or cannot be untangled

=D &L >
1. Reduce 1 loop cyclically 2. Reduce the other loops linearly
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Straightening a graph



Straightening a graph
(connected, say)

\‘./
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Straightening a graph

\‘./

BS

choose a base vertex
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Straightening a graph




Straightening a graph

b

3S

choose a spanning tree
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Straightening a graph




Straightening a graph

contract the spanning tree

b

3S
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Straightening a graph

contract the spanning tree

b

0




Straightening a graph

\‘./

Y

W




Straightening a graph
contract and bundle the other edges when possible

b

0
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Straightening a graph

contract and bundle the other edges when possible
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Straightening a graph

contract and bundle the other edges when possible

\‘./

S
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Straightening a graph




Straightening a graph

consider the associated loop graph
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Straightening a graph

consider the associated loop graph
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Straightening a graph




Straightening a graph

straighten the loop graph
N

v

[
7
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Straightening a graph

straighten the loop graph

\‘_,
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Straightening a graph

D



Straightening a graph

forget about the loop graph

\‘_/
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Straightening a graph

forget about the loop graph

118



Straightening a graph




Straightening a graph

A straightened graph is a weak embedding
or cannot be untangled
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Straightening a graph

A straightened graph is a weak embedding
or cannot be untangled

121



(4 tricks and data structures for achieving
the announced time complexities)
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Discrete analogue of
Tutte embeddings



Recall: Tutte embeddings

% -

edges straight and

>

vertices “barycentric”
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Harmonious drawings




vertices “barycentric”

flv) € 0OH 7117

Je f(e) escapes H - f
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vertices “barycentric”

flv) e OH 7"‘”
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vertices “barycentric”
fv) e oH m W

— ,
W f o W'escapes H

——
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where to escape depends on the coloring

129



this definition generalizes to surfaces

130



graph G
reducing triangulation 7" with m edges
[+ G =T of size n

Definition of harmonious drawings

f harmonious and f can be untangled
= f weak embedding

Algo to make f harmonious in O((m+41n)?n2) time,
without increasing any edge length
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Harmonizing a drawing

1 we define monotonic moves to apply to f

- D

5 Some moves do not seem to decrease any potential
so we combine the moves carefully
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Making curves cross
minimally

133



Related work

closed walks of total length 7
on a graph of size m

Despré, Lazarus, 2019

o Put a single curve in minimal position in O(m + n*) time

o Compute the min. nb. of crossings in O( m + n*) time
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closed walks of total length n
on a graph of size m

D.. 2024 m?n +mnlog(mn)

o Put e-single-ewrve in minimal position in O( #——=")

e Compute the min. nb. of crossings in O( %+

m? +mnlog(mn)
135



Untangling Graphs

Computing Delaunay Triangulations

Other works and conclusion
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Untangling Graphs

Computing Delaunay Triangulations

Other works and conclusion
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Triangulations of
polyhedral surtaces
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Triangulation of polyhedral surface

triangulation

139



Triangulation of polyhedral surface

surface

triangulation
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Triangulation of polyhedral surface

surface

triangulation

141



Triangulation vs. Mesh

/ \

142



Every mesh gives a triangulation

143



Every mesh gives a triangulation
but converse is false!
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Types of points on the surface

singularity

interior ®2W C‘D# -

boundary i # T [’

Ll
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boundary
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boundary singularities

149



Problem



Delaunay triangulation

triangulation in which
every edge is Delaunay

151



Delaunay triangulation

Generically, every surface has a

Delaunay triangulation
whose vertices are the singularities

152



Delaunay triangulation

Generically, every surface has a

Delaunay triangulation
whose vertices are the singularities

Problem

Given triangulation 1T’, compute

“the” Delaunay triangulation
of the surface of T

153



Motivations

154



Motivations

® isometry testing
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Motivations

® Isometry testing
e shortest paths

156



e shortest paths
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Shortest paths on meshes

On a mesh M with n triangles. ..

a shortest path cannot cross an edge twice

— shortest path can be computed in O(f(n)) time

Mitchel, Mount, Papadimitriou, 1987

158



Shortest paths on triangulations
they can cross edges arbitrarily many times

Z5

e L »
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Shortest paths on triangulations

max number of times
a shortest path visits a triangle

— shortest path can be computed in O(f(n,/)) time

160



Shortest paths on triangulations

Delaunay triangulations have happiness O(1)

161
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aspect ratio =
maximum side length

minimum height

D. 2025

Given triangulation 1" of n triangles, of aspect ratio r,

whose surface has no boundary, we can compute
Delaunay in O(n®log”(n)-log*(r)) time

163



aspect ratio =

maximum side length

minimum height

_—urTace has no boundary, we can compute
Delaunay in O(n3 log®(n): log™ (1)) time

164



maximum side length

aspect ratio = l
\

minimum height

165



Algorithm overview

166



Classical method

compute the Voronoi diagram
by propagating waves

then derive Delaunay from it

167



Algorithm

compute classically

T )
from Voronoi

Delaunay
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Algorithm

compute classically

from Voronoi Delaunay
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Algorithm

D. 2025

compute classically

from Voronoi Delaunay

"
—
—
—
—
—
—
—
—
—
—
—
—
" —
—
—
—
—
—
—
—
—
—
—
— iy

consider the singularities
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Algorithm

D. 2025

compute classically

from Voronoi Delaunay

"
—
—
—
—
" —
—
B=
—
—
—
—
—
—
—
—
—
" —
—
—
—
—
—
—
55.

cut out caps around the singularities
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Algorithm

D. 2025

compute classically

from Voronoi Delaunay

cut out caps around the singularities

AL
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Algorithm

D. 2025

compute classically

from Voronoi Delaunay

cut out caps around the singularities
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Algorithm

D. 2025

compute classically

from Voronoi Delaunay
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Algorithm

D. 2025

compute classically

from Voronoi Delaunay

—
—
—
—
—
" —
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
" —
—

put the caps back
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Simplification algorithm

Tuned combination of elementary operations, like
inserting vertices in edges
inserting edges in faces

deleting vertices
repeated many times

some simplify the geometry,
others decrease # vertices
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Analysis

Show that during execution:
1. # vertices stays bounded

oets simpler and simpler

O N R A

) | Enclosure | -
// 1 1 v D. 2025
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Enclosure

R S—
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Lower bound

179



Lower bound

180



Lower bound
Output: Delaunay

() ()
.
(-, ) ()
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Lower bound
Output: Delaunay

('7')
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Lower bound
Output: Delaunay

183



Lower bound
Output: Delaunay

184



Lower bound
Output: Delaunay

(0,0)

No Real RAM algo can compute
Delaunay from x in o(log x) time
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Lower bound
Output: Delaunay

(0,0) (1,0)

No Real RAM algo can compute
Delaunay from x in o(log x) time
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Lower bound
Output: Delaunay

(0,0)

No Real RAM algo can compute
Delaunay from x in o(log x) time
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Lower bound
Output: Delaunay

(0,0)

No Real RAM algo can compute
Delaunay from x in o(log x) time
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Lower bound
Output: Delaunay

(0,0)

No Real RAM algo can compute
Delaunay from x in o(log x) time

189



Untangling Graphs

Computing Delaunay Triangulations

Other works and conclusion
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Untangling Graphs

Computing Delaunay Triangulations

Other works and conclusion
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Delaunay flips algorithm

Delaunay flip: i




Delaunay flips algorithm

Delaunay flip: i

193



Delaunay flips algorithm

Delaunay flip: i




Delaunay flips algorithm

Delaunay flip: :

195



Delaunay flips algorithm
Delaunay flip:

2 -




Delaunay flips algorithm
Delaunay flip:

-

Algorithm:
apply Delaunay flips greedily as long as you can

197



Delaunay flips algorithm
Delaunay flip:

-l

Algorithm:

apply Delaunay flips greedily as long as you can

— terminates and outputs a Delaunay triangulation




D., 2022-23
Upper bound for # Delaunay flips on

@ topological shape of a torus
§§27T around each vertex
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Despré, D., Pouget, and Teillaud, 2025

Cx GAL package for computing with
=l D = hyperbolic surfaces

generation (genus 2 only)

Delaunay flip

—
Triangulated hyperbolic

surface
| .

visualization

200



Despré, D., Pouget, and Te._ EXaCt COm

C\ GAL package for Compubug utatl.()ns!

hyperbolic surtaces |

generation (genus 2 only) Delaunay flip

— |
Triangulated hyperbolic
surface A
| S

visualization
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Triangulated hyperbolic
surface

202



Combinatorics Geometry

AN s /N CGAL . e cach edge is decorated
~ X\=// \ combinatorial maps with a complex number
2N (\\ 7SN\ (cross ratio)

Triangulated hyperbolic
surface _y (z3—21)(24a—22)

(z3—22)(z4—21)
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Possible continuations

e generation of hyperbolic surfaces of genus > 3
e what is the complexity of Delaunay flips algo?
e certifying that a drawing cannot be untangled
e untangling by homotopy moves

e extension to non orientable surfaces

e what is the complexity of untangling?

e minimizing crossings of graphs by homotopy

e how unique reducing triangulations are?

204
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