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Untangling Graphs on Surfaces

Eric Colin de Verdiére* Vincent Despré! Loic Dubois?

Abstract

Consider a graph drawn on a surface (for example, the plane minus a finite set of obstacle points), possibly
with crossings. We provide an algorithm to decide whether such a drawing can be untangled, namely, if one can
slide the vertices and edges of the graph on the surface (avoiding the obstacles) to remove all crossings; in other
words, whether the drawing is homotopic to an embedding. While the problem boils down to planarity testing
when the surface is the sphere or the disk (or equivalently the plane without any obstacle), the other cases
have never been studied before, except when the input graph is a cycle, in an abundant literature in topology
and more recently by Despré and Lazarus [SoCG 2017, J. ACM 2019|, who gave a near-linear algorithm for
this problem.

Our algorithm runs in O(m -+ poly(g+b)nlogn) time, where g > 0 and b > 0 are the genus and the number
of boundary components of the input orientable surface S, and n is the size of the input graph drawing, lying
on some fixed graph of size m cellularly embedded on S.

We use various techniques from two-dimensional computational topology and from the theory of hyperbolic
surfaces. Most notably, we introduce reducing triangulations, a novel discrete analog of hyperbolic surfaces in
the spirit of systems of quads by Lazarus and Rivaud [FOCS 2012] and Erickson and Whittlesey [SODA 2013],
which have the additional benefit that reduced paths are unique and stable upon reversal; they are likely of
independent interest. Tailored data structures are needed to achieve certain homotopy tests efficiently on these
triangulations. As a key subroutine, we rely on an algorithm to test the weak simplicity of a graph drawn on
a surface by Akitaya, Fulek, and Toth [SODA 2018, TALG 2019].

1 Introduction

In this paper, we study the following problem: Given a drawing § of a graph G on a (compact, connected,
orientable) surface S, possibly with boundary, decide whether it is possible to untangle J, that is, to make
é crossing-free by a continuous motion; more formally, whether ¢ is homotopic to an embedding, where the
homotopy may move vertices and edges. See Figure

We first remark that, in the case where the surface is topologically trivial (the sphere or the disk), this
problem boils down to planarity testing, and is thus solvable in linear time (see Hopcroft and Tarjan [31]). Before
stating our results in detail and presenting the main techniques, we survey related works, on curves and graphs
on surfaces.
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Figure 1: A drawing of a graph that cannot be untangled, on an orientable surface of genus three without
boundary.

Related work on curves on surfaces. Topological questions on curves on surfaces have been an important
field of study in the mathematical community for more than one hundred years. Dehn [19] gave combinatorial
characterizations of whether a closed curve on a surface is contractible (can be continuously moved to a point) or
whether two such closed curves are freely homotopic (can be continuously deformed into each other). Poincaré [40]
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provided similar characterizations to decide whether a closed curve on a surface is homotopic to a simple closed
curve (in our language, can be untangled). Although Dehn and Poincaré did not provide detailed analyses of their
constructions, it is clear that they can be transformed into effective algorithms; see, e.g., Stillwell [44, Chapter 6]
for an overview.

Generally, surfaces of genus at least two without boundary turn out to be the most difficult case. For such
a surface S, a key insight, already present in these early works but reused in many other ones mentioned below,
is the following: S can be endowed with a hyperbolic metric (in the same way as the torus can be endowed
with a Euclidean metric); under this metric, every closed curve is homotopic to a unique geodesic; moreover, any
family of geodesic curves crosses minimally (has the least number of crossings among all curves in their respective
homotopy classes).

The problem of determining whether a closed curve can be untangled has been extensively considered by the
mathematical community in a long series of papers since the early 1960s; see Reinhart [41], Chillingworth [12,/13],
and Birman and Series [5]. Later Cohen and Lustig [14] and Lustig [38] (see also Hass and Scott [30]) built upon
these works to determine the geometric self-intersection number of a closed curve and the geometric intersection
number of two closed curves (the number of crossings of homotopic curves crossing minimally). De Graaf and
Schrijver [18] proved that it is possible to make curves cross minimally using homotopy (a.k.a. Reidemeister)
moves that never increase the number of (self-)crossings.

These problems have been revisited under a more algorithmic lens by computational topologists since the
1990s. Contractibility and homotopy can be tested in linear time, as proved by Lazarus and Rivaud [37] and
Erickson and Whittlesey 25|, building upon earlier work by Dey and Guha [22]. One can decide whether a
closed curve of length n, lying on a graph of size m itself embedded on S, can be untangled in O(m + nlogn)
time, as proved by Despré and Lazarus |21], who also proved that the geometric self-intersection number can be
computed in O(m+n?) time. Related works, by Chang and Erickson [10] and Chang and de Mesmay [9], focus on
computing the number of non-increasing homotopy moves needed to make a set of closed curves cross minimally.
Although all these algorithms are purely combinatorial, in many cases their proofs of correctness involve tools
from hyperbolic geometry, suitably discretized, or at least rely on some intuition from hyperbolic geometry.

Related to deciding whether a curve can be untangled, the following problem has been studied recently:
Decide whether a given closed curve drawn in a graph is weakly simple, namely, whether it can be untangled in
a neighborhood of the graph by an arbitrarily small perturbation. Chang, Erickson, and Xu [11], building upon
earlier work by Cortese, Di Battista, Patrignani, and Pizzonia [17], provided a near-linear algorithm.

Related work on graphs on surfaces. Many of the above questions can be extended from curves to
graphs on surfaces. Surprisingly, the literature studying them for graphs is rather scarce, in stark contrast with
the central importance of graphs in theoretical computer science.

In the mathematical community, the only work that we are aware of, due to Ladegaillerie [35], is a reduction
from the test of existence of an isotopy (a continuous family of embeddings) between two embeddings of a graph
on a surface, to a test of isomorphism between combinatorial maps and an infinite number of homotopy tests
between closed curves. This characterization has been refined by Colin de Verdiére and de Mesmay [15], leading
to a polynomial time algorithm.

The well studied embeddability problem is to decide whether an input graph G can be embedded on an
input surface S. Our problem adds some homotopy constraints to the embeddability problem. The latter is
NP-complete when S is part of the input, as proved by Thomassen [45]; however, Mohar [39] has given a linear
time algorithm when S is fixed, later simplified and improved by Kawarabayashi, Mohar, and Reed [33]. Our
result indicates that adding these homotopy constraints makes the problem solvable in polynomial time, even if
S is part of the input.

There is a vast interest in crossing numbers for graphs drawn in the plane or in surfaces (for a survey, see
Schaefer [42]), including constraints on the parity of the number of crossings between edges, related to the Hanani-
Tutte theorem (see Schaefer [43]). However, the constraint that we study, namely, fixing the homotopy of the
drawing, appears to be entirely new. A geometric variant has been studied by Goaoc, Kratochvil, Okamoto, Shin,
Spillner, and Wolff [28]. Given a straight-line drawing of a graph in the plane, they proved that the minimum
number of vertices that have to be moved in order to untangle the drawing (the edges remaining drawn as line
segments) is NP-hard to compute and to approximate; they also provided upper and lower bounds on the number
of required moves.

More directly related to our work, in a recent paper, Atikaya, Fulek, and T6th [3] extended the weak simplicity
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problem to graphs: Given a drawing § of a graph G in another graph H, itself embedded on a surface S, is it
possible to make ¢ simple with an arbitrarily small perturbation? They solved this problem in near-linear time.
We will heavily rely on their algorithm, and postpone a detailed description to Section [2:2] More recently,
Fulek [27] gave a polynomial time algorithm to decide whether a graph drawn in the plane (without obstacles)
can be perturbed by an arbitrarily small perturbation to turn it into an embedding in a pre-specified isotopy
class.

Our results. The input to our problem is a fixed cellular embedding H of a graph on a surface S, together
with a drawing 0 of a graph G on H, in the sense that ¢ maps vertices of G to vertices of H and edges of G to
walks in H. We obtain the following result:

THEOREM 1.1. Let H be a graph of size m cellularly embedded on an orientable surface S of genus g > 0 with
b > 0 boundary components. Let G be a graph and let § : G — H be a drawing of size n. We can decide whether
there is an embedding of G on S homotopic to & in O(m + (g + b)?nlog((g + b)n)) time.

(Again, the cases of the sphere and the disk boil down to planarity testing so we omit these from now on.) As in
some previous papers in the area, e.g., [2537], we use the RAM model, in which pointers and integers bounded
by a polynomial in the input size can be manipulated in constant time (see Aho, Hopcroft, and Ullman. |2 or
Agarwal |1 Section 40.1]). If the drawing é can be untangled, it is clear from our proofs that one can compute
an embedding homotopic to ¢ in polynomial time; details are omitted from this version.

We also consider an alternative framework in the case where S is the plane minus a finite set of obstacle
points, and § is a piecewise linear drawing of G avoiding the obstacles. In this framework, we prove:

THEOREM 1.2. Let P be a set of p points in R%. Let G be a graph and let § : G — R?\ P be a piecewise linear
drawing of size n. In time O(p®/?nlog(pn)), we can decide whether there is an embedding homotopic to & in
R2\ P.

A new tool: reducing triangulations. As is typical, the most difficult case is when the input surface S
has genus at least two and no boundary, so we focus on this case. For this purpose, we introduce the concept of
reducing triangulation of S, a triangulation 7" of S with all vertex degrees at least eight and whose dual graph is
bipartite. Reducing triangulations form a new discrete analog of hyperbolic surfaces, and we define the notion of
reduced walk in T, which behave similarly as geodesics in the continuous case. A (possibly closed) walk W in T'
is reduced if no “local” reduction rule can be applied to W. We prove that W is (possibly freely) homotopic to
a unique reduced walk, which we can compute in linear time, and that reduced walks are stable upon reversal.
Systems of quads, introduced by Lazarus and Rivaud [37], refined by Erickson and Whittlesey [25], and reused by
Despré and Lazarus |21], have the same objective; in systems of quads, one can ensure either uniqueness in a given
homotopy class or stability upon reversal, but (presumably) not both at the same time, which induces substantial
technicalities in the previous papers [21,|25,/37]. Reducing triangulations are thus likely to be of independent
interest. Incidentally, the definition of reduced walks depends on the choice of an orientation of the surface, which
is the main reason why we state our results for orientable surfaces only.

Overview of the paper. After some preliminaries (Section , Sections |3| to |§| are devoted to a proof of
Theorem [[.T]in the case where H is a reducing triangulation on a surface of genus at least two without boundary;
more precisely:

THEOREM 1.3. Let T be a reducing triangulation of an orientable surface S of genus g > 2 without boundary.
Let G be a graph and let 6 : G — T be a drawing of size n. We can determine whether there is an embedding of G
on S homotopic to § in O(gnlog(gn)) time.

In detail, we introduce reducing triangulations, reduced walks and their properties, and reduction algorithms
in Section We then prove Theorem in a special case where G is a (sparse) loop graph—each connected
component of G contains a single vertex (Proposition in Section . The main idea, in the same spirit as
Despré and Lazarus |21], is to use the fact that geodesics in hyperbolic surfaces cross minimally, and to prove
that this remains true to some extent in our discrete analog. In our case, roughly but not exactly, reducing
all loops of a loop graph makes it weakly simple unless it cannot be untangled, so our algorithm eventually
applies the weak simplicity test by Akitaya, Fulek, and Toth [3]; but the proof of correctness involves putting
a particular hyperbolic metric on the surface obtained by puncturing S and requires delicate arguments in the
compactification of the universal cover of §. Then, to solve the problem for an arbitrary graph G, at a high
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level we contract a spanning forest of G and apply Proposition to the resulting loop graph, after removing
the contractible loops and identifying the homotopic loops. If the loop graph cannot be untangled, neither can
the original graph. Otherwise, it turns out that the graph can be untangled in S if and only if it is a weak
embedding in (a neighborhood of) the loop graph, but proving this fact is rather subtle; we formalize this using
the notion of factorization (informally, the contraction of the graph, and the removals and identifications of loops
in the resulting loop graph), and conclude the proof of Theorem by invoking once more the weak simplicity
algorithm |[3], all this in Section [5} A more efficient algorithm to compute a factorization, requiring tailored data
structures to achieve certain homotopy tests efficiently, is deferred to Section [6]

After proving Theorem we prove Theorem for the case g > 2, b = 0 in Section [7] essentially by
converting our input embedded graph H into a reducing triangulation. In Section [§] we prove our result for the
remaining orientable surfaces, namely, the torus and the surfaces with non-empty boundary; while the overall
strategy is the same, reducing triangulations are not needed anymore, which dramatically simplifies the algorithm.
Finally, in Section E[, we prove our result on the plane with obstacles (Theorem .

2 Preliminaries

2.1 Graphs on surfaces, homotopies, and untangling In this paper, graphs are finite and undirected, but
may have loops and parallel edges. We use standard notions of graph theory, in particular the notion of walk in a
graph. In a walk of length k, (vg, €9, v1,€1,...,Vk—1,€k—1, V), the first and last occurrences of vertices, vy and vy,
are its endpoints, and the other occurrences, vy, ...,v,_1, are the interior vertices. Vertices and edges may
be repeated. The two endpoints of a walk may coincide; a walk can even be reduced to a single vertex. A closed
walk is similar to a walk, but the vertices are ordered cyclically instead of linearly; every vertex of a closed walk
is an interior vertex.

We need some basic topology of surfaces [4,/44]; we only provide the most basic definitions, sometimes only
with an informal description. All the surfaces we consider are connected and orientable, so we omit these adjectives
in the sequel. A compact surface, possibly with boundary, is determined up to homeomorphism by its genus
(number of handles) and number of boundary components [4, Theorem 1.5]. We will occasionally consider non-
compact surfaces, which will be either obtained by removing finitely many points (punctures) of a compact
surface, or a universal cover, which are (usually) non-compact; see below.

A path on a surface S is a continuous map p : [0,1] — S; its endpoints are p(0) and p(1). A loop with
basepoint b is a path whose both endpoints equal b. A path is simple if it is one-to-one, except, of course, that
p(0) and p(1) coincide if p is a loop. A closed curve is a continuous map c : S' — S, where S* = R/Z is the
circle; it is stmple if it is one-to-one. An arc on a surface with boundary is a path that intersects the boundary
precisely at its endpoints. Paths and closed curves that differ only by their parameterizations are regarded as
equal.

A drawing of a graph G on a surface S maps every vertex of G to a point of S, and every edge of G to a
path with the appropriate endpoints. An embedding of G on S is a “crossing-free” drawing (vertices are mapped
to pairwise distinct points, edges are mapped to simple, interior-disjoint paths, and the relative interior of each
edge does not contain the image of a vertex). See Figure [2l The faces of an embedding of G are the connected
components of the complement of its image. A graph embedding is cellular if every face is homeomorphic to
an open disk, and a triangulation if every face is homeomorphic to an open disk and is bounded by three sides
of edges. The rotation system of an embedding of G is the cyclic ordering of the edges of G incident to each
vertex in the embedding. We use any of the numerous and standard data structures to represent combinatorial
maps of cellular graph embeddings on orientable surfaces and move around quickly, e.g., the doubly-connected
edge list, the halfedge data structure, or the gem representation [23}34].

A homotopy between two paths py and p; with the same endpoints is a continuous family of paths (p;).e(o,1]
with the same endpoints. A (free) homotopy between two closed curves ¢y and ¢; is a continuous family of
closed curves (ct):e[o,1]; this time, no point is required to be fixed. A loop or closed curve is contractible if it
is homotopic to a constant loop or closed curve. A homotopy between two drawings of the same graph is a
continuous family of drawings between them; we emphasize that the vertices may move during the deformation.
A drawing of a graph on a surface can be untangled if it is homotopic to an embedding.

Let H be a graph embedded in a surface S. Consider also an abstract graph G. A drawing ¢ of G in H is a
drawing of G on S such that each edge of G is mapped to a walk in H (possibly reduced to a single vertex). The
size || of ¢ is the number of edges of G plus the sum of the lengths of the walks ¢(e), for all edges e of G.
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Figure 2: A graph embedded on an orientable surface of genus three without boundary.

2.2 Weak embeddings Let H be a graph embedded in a surface S, and let G be an abstract graph. A
drawing ¢ : G — H C S is a weak embedding if there exist embeddings arbitrarily close to ¢ (viewed as a
drawing on S), or equivalently but more formally if ¢ is the limit of some sequence of embeddings ¢ : G — S in
the compact-open topology. Akitaya, Fulek, and To6th [3] provide an algorithm to decide whether such a ¢ is a
weak embedding. We will heavily rely on this result, restated below, but we need some preparations. As noted
in |3, Section 1| the property for ¢ to be a weak embedding does not depend on the precise embedding of H
on S, but only on G, ¢, and the abstract graph H together with its rotation system. Akitaya et al. formulate
an alternative, more combinatorial definition of weak embeddings (in terms of strip systems), and we present a
trivially equivalent variation more suitable to our needs, the patch system.

Intuitively, the patch system of a graph H boils down to the dual graph of H, if H is cellularly embedded; but
we cannot make this assumption in general. Formally, the patch system of the graph H (assumed here without
loops or multiple edges, just for clarity of exposition, but this restriction can be dispensed of easily) equipped
with its rotation system is defined as follows. Consider an oriented closed disk D, for each vertex v of H; consider
pairwise disjoint closed segments along the boundary of D,,, one segment per edge incident to v, ordered along the
boundary of D, as prescribed by the rotation system. Now, for every edge uv of H, identify the corresponding
segments of the disks D,, and D, in a way that respects their orientations. These identifications result in a surface
with boundary X, the patch system of H. The intersection of D, and D, is either a simple arc a(uv) in X, if
u and v are adjacent, or empty otherwise. If H is embedded in a surface S and inherits its rotation system from
the embedding, then its patch system 3 can be thought of as a neighborhood of H in S, but its definition relies
on combinatorial data only.

It follows from the considerations by Akitaya et al. |3l Section 1] that a map ¢ : G — H C S is a weak
embedding if and only if there exists an embedding ¢ : G — ¥ that satisfies the following: (1) ¢ maps each vertex
v of G inside D,; (2) v maps each edge e of G, traversing edges e, . .., e of H in this order, to a path in ¥ crossing
the arcs exactly in the order a(ey),...,a(eg). We say that such an embedding ¢ : G — ¥ approximates .
Finally, here is the result that we will use:

THEOREM 2.1. (AKITAYA, FULEK, AND TOTH [3|) Given an abstract graph G, an embedded graph H, and a
drawing ¢ : G — H, we can compute an embedding approximating ¢, or correctly report that no such embedding
exists, in O(|p|log|y|) time.

(We note that the authors require that ¢ be “simplicial”’, but we can assume this trivially by subdividing the
graph G. The running time, in their theorem O(mlogm) where m is the number of edges, becomes O(|p|log |¢]).)

2.3 Covering spaces, lifts, and a property on homotopy Here we recall basic properties of covering spaces;
see, e.g., |4 Section 10.4]. A covering space of a surface S is a (usually non-compact) surface S equipped with
a projection T : S — & that is a local homeomorphism. The preimages of a point under 7 are its lifts. A lift
of a path p in § is a path p on S such that 7o p = p. Given any path p and any lift b of p(0), there is a unique
lift p, a path in S starting at b. A path p self-intersects if and only if either a lift of p self-intersects, or two lifts
of p intersect. One can similarly lift bi-infinite paths p: R — S, and even homotopies; see, e.g., |4, 10.11].
Closed curves have no basepoint, and thus typically lift to infinite paths in covering spaces. Given a closed
curve ¢ : St = R/Z — S, let ¢’ be the infinite path that “wraps around” ¢ infinitely many times, namely ¢/ : R — S
is such that ¢/(t) = c¢(t mod 1). A lift of the closed curve c is, by definition, a lift of the (bi-infinite) path ¢’
We will mostly use universal covers: The universal cover Sis a covering space in which every loop is
contractible. A loop in S is contractible if and only if it lifts to a loop in S. If S has positive genus and no
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boundary, then S is homeomorphic to the open disk.

A closed curve is primitive if it is not homotopic to the kth power of some other closed curve for some k& > 2
(a closed curve iterated k times). For future reference, we quote (see Farb and Margalit [26, Proposition 1.4], or
Epstein [24, Theorem 4.2]):

LEMMA 2.1. In an orientable surface possibly with boundary, every simple non-contractible closed curve is
primitive.

2.4 Hyperbolic surfaces and properties from Riemannian geometry We will use standard notions of
hyperbolic geometry, described succinctly in Farb and Margalit |26, Chapter 1]. See also Cannon, Floyd, Kenyon,
and Parry [7] for a thorough introduction to the properties of the hyperbolic plane.

One model of the hyperbolic plane H, the Poincaré model, is the unit open disk endowed with a specific
Riemannian metric of constant curvature —1 defined by ds? = 4(dz?+dy?)/(1 — 2% —y?))? (intuitively, it is easier
to move around at the center of the disk than close to its boundary). In this model, the maximal shortest paths
are the subsets of circles (or, in the limit case, lines) touching the boundary of the disk orthogonally.

A hyperbolic surface is a metric surface locally isometric to the hyperbolic plane. A compact topological
surface without boundary can be endowed with a hyperbolic metric if and only if its genus is at least two. The
hyperbolic metric on such a surface lifts to its universal cover, which becomes isometric to the hyperbolic plane H.

We need a few definitions and properties from Riemannian geometry that we will use in the realm of hyperbolic
surfaces: A crossing between two paths is a point where they intersect in their relative interiors, and actually
cross in a transverse manner. A geodesic is a path that is locally shortest. Given any tangent vector v at a
point p, there is a unique maximal geodesic with tangent vector v at p. As a consequence, if any two geodesics
intersect at p, they are either crossing at p, or they are tangent, which implies that they overlap: They are both
part of the unique maximal geodesic passing through p with that common tangent vector.

Some non-compact hyperbolic surfaces can be constructed from tdeal hyperbolic polygons, the sides of which
are geodesics of infinite length. Pair the sides of a collection of ideal hyperbolic polygons, and identify the two
sides in each pair in a way that respects the orientations of the polygons. The result is a hyperbolic surface whose
topological type is that of a surface obtained by puncturing (removing points from) a compact surface without
boundary, but punctures are relegated to infinity.

Both kinds of hyperbolic surfaces presented above enjoy the following specific properties: (1) There is a unique
geodesic path homotopic to a given path; (2) there is a unique geodesic closed curve freely homotopic to a given
closed curve, provided that curve is non-contractible and not homotopic to a neighborhood of a puncture. In both
cases, the geodesic is the unique shortest path or closed curve in its (free) homotopy class.

3 Reducing triangulations and reduced walks

In this section, we introduce reducing triangulations and reduced walks and their properties. We start by defining
these objects, then show the existence of a unique reduced (closed) walk in any given homotopy class and any
non-trivial free homotopy class, and finally show how to compute them in linear time.

3.1 Reducing triangulations, turns, and reduced walks A triangulation of a surface is reducing if its
dual is bipartite (each triangle is colored either red or blue, and adjacent triangles have different colors) and its
vertices all have degree at least eight. A straightforward application of Euler’s formula shows that any reducing
triangulation of any surface of genus g > 2 without boundary must have size O(g). It is easily seen that reducing
triangulations with at most two vertices exist for every such surface (see Section [7} and in particular Figure [17)).
We will use reducing triangulations for these surfaces, and also for their covering spaces; indeed, note that any
reducing triangulation on a surface naturally lifts to a reducing triangulation in its covering spaces, by lifting the
colors.

Let W be a walk (closed or not) in a reducing triangulation 7. Assume that a subwalk of W traverses the
directed edge e, arrives at vertex v, and from there traverses the directed edge ¢’. Vertex v of W makes a k-turn,
k > 0, if the walk of length two composed of edges e and €', in this order, leaves exactly k triangles of T to its
left in the cyclic ordering around v between e and e’. Similarly (and not exclusively), it makes a —k-turn, k > 1,
if that walk leaves exactly k triangles of T to its right. When a turn is not a O-turn, the notation is ambiguous
because it can be represented either by a positive integer or by a negative integer (whose absolute values sum up
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443 > p2D

Figure 3: Some of the turns that a walk can make in a reducing triangulation.

L PV

Figure 4: In a reducing triangulation, a portion of a walk that makes a —2,-turn followed by a 1,-turn (both are
bad turns).

to the degree of the vertex in T'). We always use an integer between —3 and 3 if possible, which is not ambiguous
because each vertex of T' has degree at least eight; otherwise, we choose the positive integer.

We sometimes need to be more precise and refine the notation: For k € Z, a kj-turn, respectively a k,.-turn,
is a k-turn such that e (with the previous notation) has a blue, respectively red, triangle to its left. See Figures
and [

We call bad turn any O-turn, 1-turn, —1-turn, 2,-turn or —2,.-turn. A walk in T is reduced if none of its
interior vertices makes a bad turn. A closed walk is reduced if none of its vertices makes a bad turn, not all of
them make a 3,-turn, and not all of them make a —3,-turn. Intuitively, reduced walks are discrete geodesics in
the triangulation 7" where all triangles are equilateral: A reduced walk leaves an angle at least m on both sides
at each interior vertex, except when the vertex makes a 2,-turn or a —2,-turn, which corresponds to an angle
of 27/3 on one side. The bipartiteness of the triangulation then “breaks ties” for determining the geodesic. We
emphasize that the notion of reduced walks requires an orientation of the surface.

Here are a few immediate but crucial properties that we will use repeatedly. Any subwalk of a reduced walk
(closed or not) is also reduced. The reversal of any reduced walk (closed or not) is also reduced, because reversing
a walk exchanges 2,-turns with —2,.-turns, and 3,-turns with —3;-turns.

The turn sequence of a (closed) walk is the list of turns made by the walk at its interior vertices; this is
a cyclic sequence if the walk is closed. We use some straightforward notations for turn sequences: Exponents
denote iterations, stars denote arbitrary nonnegative integers, and vertical bars denote “or”. For example, 23%4
denotes a 2 followed by a nonnegative number of 3s, followed by a 4. (23*4)* denotes a nonnegative number of
concatenations of patterns of that form. (2|4) denotes either a 2 or a 4.

3.2 Uniqueness of reduced walks In this section, we prove:
PROPOSITION 3.1. In a reducing triangulation T, any two homotopic reduced walks are equal.

Intuitively, reduced walks are geodesics, and the proof of Proposition [3.1] goes by showing that any two
distinct homotopic reduced walks would form a monogon or a bigon (a disk bounded by one or two subwalks, in
the universal cover), and that this is impossible. It relies on the following two lemmas.

LEMMA 3.1. Any walk in T whose turn sequence is of the form 23*2 contains a 2,-turn. Any walk in T whose
turn sequence is of the form 23*4 or 43*2 contains a 2.-turn or a 4,-turn.

Proof. By bipartiteness of the reducing triangulation T, the color of the triangle of T located to the left of the
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walk changes when passing over an interior vertex that makes a 2-turn or 4-turn, and not when the interior vertex
makes a 3-turn. O

LEMMA 3.2. Let C be a simple closed walk in T that bounds a (non-empty) disk to its left. For every k > 1, let
my, be the number of vertices of C' at which C' has exactly k triangles to its left. Then 2my+mao > 6+, M.

The proof can be viewed as a consequence of a discrete version of the Gauss—Bonnet theorem |25 Section 2.3]:

Proof. Let D be the restriction of the reducing triangulation to the closed disk bounded by C. Consider the
following discharging argument. Give initial weight 6 to each vertex and each triangle of D, and weight —6 to
each edge of D. By Euler’s formula, the weights initially attributed sum up to 6. Discharge as follows. For each
incidence between a vertex v and an edge e, transfer 3 from v to e. For each incidence between a vertex v and
a triangle ¢, transfer 2 from ¢ to v. Now, edges and triangles all have weight 0, while every vertex v has weight
k(v) := 6 — 3deg(v) + 2deg’(v) where deg(v) and deg’(v) denote respectively the number of edge incidences and
triangle incidences of v in D. We proved 6 = ) ().

Every vertex v that lies in the interior of D (not on C itself) satisfies deg(v) = deg'(v) and thus
k(v) = 6 — deg(v) < 0, since each vertex of T has degree at least eight. Every vertex v that lies on C' satisfies
deg(v) = deg’(v) + 1 and thus x(v) = 3 — deg’(v). Thus, we have 6 = > k(v) < > ,<,(3 — k)my, implying the
result. ]

Proof of Proposition[3.1 The reducing triangulation 7 lifts to an infinite reducing triangulation T in its universal
cover. Assume that there exist two distinct homotopic reduced walks in T' (possibly one of them being a single
vertex). Let W; and Wy be lifts of these walks in T, with the same endpoints; they are also reduced. We claim
that there exists, in T, a simple closed walk C' with at most two vertices that make a bad turn.

Indeed, if one of W7 and Wj is not simple, it contains a non-empty subwalk with the same starting and ending
vertex v, and otherwise not repeating any vertices; since subwalks of reduced walks are also reduced, the claim
holds (only at v the walk can make a bad turn). Otherwise, W7 and W5 are simple, distinct, and have the same
first and last vertices, which implies that they admit non-empty subwalks that have the same endpoints and are
otherwise disjoint. (Indeed: up to exchanging W, and Ws, some edge in W; does not belong to W5. Consider
the subwalk of W7 of minimum length containing that edge and intersecting W5 at its endpoints. The subwalks
of Wy and Wy with these endpoints have the desired property.) Let C' be the simple closed walk that is the
concatenation of these subwalks (or their reversals) W] and W3. The subwalks W7 and W3 are also reduced, since
subwalks and reversals of reduced walks are reduced. This concludes the proof of the claim.

Without loss of generality, assume that C' is directed so that the disk it bounds lies on its left. (Reversals of
reduced walks are reduced.) Let S be the set of vertices of C' that make a bad turn; we have |S| < 2. Using the
notations of Lemma we have m; < |S| < 2; indeed, any vertex that makes a 1-turn belongs to S.

We consider the subwalks with turning sequence of the form 2(1|3)*2. These subwalks may only share their
first and last edges and are otherwise disjoint. Lemma implies that mo > (6 — 2m1) + >~ My; thus, there
are at least 6 — 2m; such sequences. At most |S| —m; vertices in S make a 2-turn, and thus at most 2(|S| —m1)
such sequences start or end in S, because the sequences all start and end with a vertex that makes a 2-turn.
There remains at least (6 — 2mq) — 2(|.S| — m1) = 6 — 2|S| > 1 such sequences whose first and last elements are
not in S. In such a sequence, exactly one of the two vertices that make a 2-turn actually makes a 2,.-turn by
Lemma [3.1] which is impossible because the vertices of C' that make a bad turn are all in S. O

3.3 Uniqueness of reduced closed walks

PROPOSITION 3.2. In a reducing triangulation T, any two freely homotopic, non-contractible, reduced closed walks
are equal.

The proof of Proposition [3.2) relies on the following lemma.

LEMMA 3.3. Consider two disjoint simple closed walks C and C' that bound an annulus in T. Then C and C’
are not both reduced as closed walks.

Proof. We prove the claim by contradiction so assume that C and C” are both reduced as closed walks. Let A be
the restriction of the reducing triangulation to the closed annulus bounded by C and C’. Let ¢ be the number of
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Figure 5: The cases leading to a contradiction at the end of the proof of Lemma[3.3]

vertices in the interior of A, and let B be the vertex set of the boundary of A. For every vertex v of A let deg(v)
and deg’(v) be the number of incidences of v with respectively the edges and the triangles of A.

We first claim that 2i < > _5(3 — deg'(v)). We prove this claim with the same discharging rules as in
the proof of Lemma [3.2] Give initial weight 6 to each vertex and each triangle of A, and weight —6 to each
edge of A. By Euler’s formula, the weights initially attributed sum up to 0. Discharge as follows. For each
incidence between a vertex v and an edge e, transfer 3 from v to e. For each incidence between a vertex v and
a triangle ¢, transfer 2 from ¢ to v. Now, edges and triangles all have weight 0, while each vertex v has weight
K(v) := 6 —3deg(v) +2deg’(v). We proved 0 =Y, k(v). Every vertex v of A satisfies k(v) = 3 —deg’(v) if v € B
and £(v) = 6 — deg(v) < —2 otherwise. Therefore, 0 < 3, . 5(3 — deg'(v)) — 2i, proving the claim.

We orient C' and C” so that A lies to their left. Let C; € {C,C’}, and let By C B be the set of vertices of C.
We remark that, because C; has no bad turn, every v € B satisfies deg’(v) > 2. Moreover, because C; is reduced
as closed walk, by Lemma [3.1] its turn sequence does not contain 23*2 as a subword, and it is not of the form
23*. Thus, Y, 5, (3 — deg'(v)) < 0, with equality if and only if the turn sequence of Cy has the form (23*43*)*
or 3*.

From the above claim and the conclusion of the previous paragraph, we deduce that A has no interior vertices
and that each of the turn sequences of C' and C” is of the form (23*43*)* or 3*, which must actually be (2,3*4,3*)*
(by Lemma and because there is no 2,.) or 3; (by definition of a reduced closed walk).

Assume that the turn sequence of one boundary component of A has the form (2,3*4,3%)*. Let v be a vertex
of B that makes a 2,-turn. Then, the vertex across v in the other boundary component of A makes a 4,-turn
(Figure |5 left), which is a contradiction since no 4; appears in the allowed forms above. So the turn sequences
of C' and C” are both of the form 3;; however, for a similar reason as above, if v is a vertex of B that makes a
3p-turn, the vertices across v make a 3,-turn (Figure [5] right), a contradiction. |

Proof of Proposition[3.3 Consider a reducing triangulation T of a surface S and two freely homotopic reduced
closed walks C' and C’ in T.

We consider the annular cover S of S defined by C |16, Section 1.1]. This is a covering space homeomorphic
to an open annulus, in which C' lifts to a closed curve C’ and every simple closed curve is either contractible or
homotopic to C or its reverse. Lifting the homotopy from C' to C’ yields a lift ¢’ that is homotopic to C'. Both
C and €’ are reduced closed walks in T, the lift of the reducing triangulation 7.

We claim that C' (and, for the same reasons, also ') is simple. Indeed, lifting C' to the universal cover S
of § yields a lift, which is a bi- mﬁmte path P, and is actually reduced in the reducing triangulation T obtained
from lifting 7. By Proposition Pis simple. Since it is the only lift of C, this implies that C is simple.

Now there are two cases. If C and ¢’ are disjoint, Lemma implies a contradiction. If they intersect, at
vertex v say, then we transform C and €’ into loops with startlng and ending vertex v; these two loops have the
same turning number, and are thus homotopic reduced walks, and equal by Proposition Thus C and ¢’ are
equal, and so are C' and C’ by projection. O

3.4 Reducing a walk

PROPOSITION 3.3. Given a walk W of length n in a reducing triangulation T, we can compute a reduced walk
homotopic to W in O(n) time.

The techniques of the proof of Proposition will be reused in Section In particular, we need a few data
structures here, which will be extended later.
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Figure 6: The compressed homotopy sequence data structure.

Our reducing triangulation T is stored as an embedded graph, but we need additional information. Specifically,
for each vertex v of T, we number the directed edges with source v in clockwise order (starting at an arbitrary
directed edge). This number is stored on each directed edge. Moreover, vertex v contains an array A, of pointers
such that A,[7] is the directed edge number ¢ with source v. This array has size the degree of v, which is also stored
in v. We note that this additional data can be computed in time linear in the size of the reducing triangulation,
so we assume that the reducing triangulation incorporates this information. With this data structure, we can
perform the following operations in constant time: (1) given two directed edges uv and vw, compute the integer ¢
such that uvw forms an i-turn; (2) Given a directed edge uv and an integer ¢, compute the directed edge vw such
that the walk wvw forms an i-turn. Again, this can be done as a preprocessing step in time linear in the size of
the reducing triangulation.

We also need a data structure, called compressed homotopy sequence, that represents walks in a compact
form, in the same spirit as Erickson and Whittlesey [25, Section 4.1] use run-length encoding to encode turn
sequences. An elementary subwalk of W is an inclusionwise maximal subwalk of W whose turn sequence has
the form 3% or (—3)* for some k& > 1, or is a single symbol a ¢ {—3,3}. The elementary subwalks of W are
naturally ordered along W and cover W, with overlaps because the last edge of an elementary subwalk appears as
the first edge of the following one. We represent W by storing the elementary subwalks of W in a doubly linked
list in order along W; each elementary subwalk is described by the images in T' of its first and last directed edges,
as well as its turn sequence in compressed form, namely, whether it is of the form 3, (—3)’“7 or a, and the integer
k or the symbol a. (Walks W of length zero or one cannot be encoded in this data structure, but can be handled
separately in a trivial manner.)

Proof of Proposition[3.3 The extended turn sequence of a walk W is its usual turn sequence, with a new symbol F
appended before its first symbol and after its last letter. We consider the reduction moves depicted in Figure [7]
that modify a walk W by homotopy. Each of them can be applied when a specific subsequence appears in the
extended turn sequence of W or of its reversal:

e spur move: 0,
e spike move: 1,

bracket move: 2352 for some k > 0,

e flip move: a3¥2,3%b for some k, ¢ > 0 and some symbols a,b ¢ {—1,0,1,2,3}. (In particular, @ and/or b can
be equal to E.)

We observe that if no reduction move can be applied to W, then W is reduced. Moreover, for each walk W,
let (W) be equal to three times the length of W, plus the number of bad turns of W. We observe that p(WV)
strictly decreases at each move; indeed, a spur, spike, or bracket move decreases the length of W (by at least one)
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Figure 7: The reduction moves for the reduction of walks.

and creates at most two bad turns, while a flip move does not affect the length and removes at least one bad turn
(no bad turn is created because the degree of each vertex is at least eight, and by the conditions on a and b).
Thus, any sequence of moves has length O(n).

The algorithm is as follows. In a first step, we walk along W to initialize its compressed homotopy sequence
in O(n) time (using Operation (1) above). Then, in a second step, we traverse this sequence in order, and
reduce W as soon as a possible move is encountered, maintaining the compressed homotopy sequence as it
evolves. Each possible move involves at most six consecutive elementary subwalks, which are replaced by at most
seven elementary subwalks. Then, before resuming the algorithm and looking for a possible move, we need to
backtrack by at most five elementary subwalks in the compressed homotopy sequence, in order not to skip any
possible move created by performing the previous one. Finally, in a third step, when we reach the end of the
list, no move is possible any more; we convert our compressed homotopy sequence back to a walk on T' (using
Operation (2) above). All of this takes O(n) time because the sequence of moves has length O(n), and because
the length of a walk does not increase when reducing it, so that the compressed homotopy sequence always has
length O(n). |

3.5 Reducing a closed walk

PROPOSITION 3.4. Given a closed walk C of length n in a reducing triangulation T, we can compute a reduced
closed walk freely homotopic to C in O(n) time.

Proof. We first remove the bad turns from C. For this purpose, we use the same reduction moves as in the proof
of Proposition [3:3] but the turn sequence is now cyclic. We observe that, in each move, the part of C' that is
removed corresponds to an actual subwalk of C' (and does not “wrap around” it). In particular, in a bracket move,
the entire cyclic turn sequence of C' cannot be 23, because the color of the triangle to the left of the walk changes
after passing a 2. As a limit case, in a flip move, the symbols a and b in the sequence a3%2,3b may correspond
to the same vertex of the cyclic walk; see Figure [§] left for an illustration in the case where the turn at a = b is a
4-turn.

As in the proof of Proposition if no move is possible, then C' has no bad turn. If p(C) is equal to three
times the length of C, plus the number of bad turns of C, then ¢(C') decreases at each move, except in the very
special “heart-like” case of Figure 8] corresponding to the case where the cyclic turn sequence of C' (or its reversal)
is 43%2,.3¢ for some k, ¢ > 0. The flip move does not affect the length and removes the bad 2-turn, but both edges
of C incident to the 4-turn are rotated by one triangle, which creates another bad 2-turn, see Figure [§] However,
after this move, the only possible move flips the new bad 2-turn into a good one, at which point the closed walk
is reduced. Thus, as in the proof of Proposition any sequence of moves has length O(n).

Finally, if the turn sequence of C is of the form (3,)* or (—3;)*, then C can be reduced in O(1) time using
the new move depicted in Figure [0 0
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Figure 8: The “heart-like” situation in the proof of Proposition [3.4}
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Figure 9: The last reduction move in the proof of Proposition [3.4]

4 Untangling a loop graph

A loop graph is a graph L whose connected components have a single vertex. A drawing A of a loop graph L in
a surface S is sparse if, under A, the edges of each connected component of L are non-contractible and pairwise
non-homotopic. In this section, we prove:

PRrROPOSITION 4.1. Consider a sparse drawing A of a loop graph L in a reducing triangulation T of a surface of
genus at least two without boundary. We can determine if A can be untangled, and if so compute the rotation
system of L in some embedding homotopic to X, in time O(|]A|log|A|).

(Actually, if A can be untangled, the rotation system turns out to be the same for all homotopic embeddings;
see Corollary below. Reducing triangulations exist for every surface of genus at least two; see Figure )
Throughout this section, S has genus at least two and is without boundary.

4.1 Relation to weak embeddability of straightened loop graphs For the needs of this section, we say
that a drawing A of a loop graph L in a reducing triangulation T is straightened if it is sparse and satisfies each
of the following on every connected component Lg of L. Firstly, there is an edge e of Ly that is mapped by A to
a reduced closed walk in T, where e is seen as a (non-directed) closed curve. (This is consistent because reduced
(closed) walks are stable upon reversal.) Secondly, every other edge e’ of Ly is mapped by A to a reduced walk in
T, where €’ is seen as a (non-directed) path this time. We say that e is a major edge and that ¢’ is a minor edge
of L (with respect to A). (A similar idea has been used several times in the continuous setting Section 5].)

LEMMA 4.1. Consider a sparse drawing A of a loop graph L in a reducing triangulation T of S. We can compute
a straightened drawing X' homotopic to X in time O(|\|).

Proof. The algorithm works independently on the connected components of L, so assume that L is connected and
let v be the vertex of L. We choose the major edge e of L as an edge whose image A(e) has minimal length m > 1.
We reduce the closed walk A\(e) with Proposition [3.4] to construct A’ (e) in time O(m). While reducing the closed
walk A(e), we update homotopically the vertex A(v) so that A(v) remains on A(e) at all times, and we record the
walk W performed by A(v) in 7. In the end, the walk W has length O(m). For every other (minor) edge €’ of L,
we concatenate the reverse of W with A(¢/) and then with W, and we reduce this walk with Proposition to
construct A'(¢’) in time linear in the length of A(e’). 0
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Here is the main technical ingredient of this section:

PRrROPOSITION 4.2. Consider a straightened drawing A of a loop graph L in a reducing triangulation T of a surface
without boundary of genus at least two. If there is an embedding homotopic to X\, then X is a weak embedding.

This proposition implies immediately Proposition [£.1}

Proof of Proposition[{.1], assuming Proposition[{.2 Apply Lemma to compute in O(n) time a straightened
drawing A’ of L homotopic to A. Apply Theorem to determine in O(nlogn) time whether ) is a weak
embedding. If not, then conclude by Proposition [4.2] that there is no embedding homotopic to A. Otherwise
Theorem [2.1] produces an embedding homotopic to A, from which we may compute the desired rotation system.
d

The rest of this section is devoted to the proof of Proposition We need to start with some preliminaries.

4.2 The limit points of lifts in the universal cover Because S has genus at least two and has no boundary,
the universal cover S of S can be compactified into a topological space S U 8S, by adding a set dS of limit
points, such that the compactified space is homeomorphic to the closed disk, and under this homeomorphism
S is represented by the open disk and dS is represented by the circle. Moreover, every lift ¢ : R — S of every
non-contractible closed curve on S admits well defined limit points at +o0o and —oo in dS. We will rely on the
following topological properties.

LEMMA 4.2. If¢: R — S is a lift of a non-contractible closed curve on S, then lim o ¢ and lim_, ¢ exist (in
SUIS) and are distinct points of 9S.

LEMMA 4.3. Lift a homotopy ¢ ~ d between non-contractible closed curves on S to a homotopy ¢ >~ d between
lifts of ¢ and d. Then ¢ and d have the same limit points.

LEMMA 4.4. Consider lifts ¢ and d of non-contractible closed curves on S. Assume either that ¢ and d intersect
exactly once, or that they are disjoint lifts of the same curve on S. Then the four limit points of ¢ and d are
pairwise distinct.

LEMMA 4.5. Let ¢ and d be two non-contractible closed curves on S. If ¢ and d admit lifts with the same pairs
of limit points, there is a closed curve e such that ¢ and d are homotopic to powers of e.

For the sake of concision, we defer the (classical) construction of the limit points and the proofs of the above
lemmas to Appendix[A] Interestingly, although the properties of the limit points are expressed purely topologically
above, they all follows from folklore arguments in hyperbolic geometry: The limit points are defined by endowing S
with a hyperbolic metric and lifting this metric to its universal cover S; then S is isometric to the hyperbolic
plane, which can be compactified as described in Appendix (by adding the boundary of the open disk in the
Poincaré model), the limit points are naturally defined, and the properties follow. However, we stress that this
hyperbolic structure is only used for the proofs in the appendix. We will need a different hyperbolic metric in the

coming subsections.

4.3 Patch system and hyperbolic metric on the punctured surface To prove Proposition[d.2] we assume
that there is an embedding homotopic to A in S, and we will prove that A is a weak embedding. Recall that
since the reducing triangulation 7" is a graph cellularly embedded on S, its patch system corresponds to its dual.
More precisely, to build (the interior of) the patch system ¥ of T, we remove (puncture) a point p; from the
interior of each triangle t of T'; then, for each edge e of T, we consider the two distinct triangles ¢, ¢ incident to e
in T, and we draw a simple arc between p; and py that crosses e exactly once and does not intersect any other
edge or any vertex of T'. We assume without loss of generality that the resulting arcs are pairwise disjoint. From
now on we see the patch system ¥ as included in S in this way. (Compared to Section the patch system is
open, not closed, but this does not change anything.) Now recall from Section the notion of map L — ¥ that
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Figure 10: The map p (in green) in the hyperbolic patch system ¥ of the reducing triangulation 7', in the proof
of Proposition [£:2}

approximates A. We will show that A is a weak embedding by exhibiting an embedding I. — ¥ that approximates
A. We construct our candidate pu : L — X for an embedding that approximates A as follows.

Firstly, we endow ¥ with a complete hyperbolic metric for which the arcs of ¥ are geodesics, as follows. The
arcs of ¥ separate ¥ into open disks. Each resulting connected component P has k > 8 incidences with arcs since
the vertices of T' have degree at least eight. We replace P by a hyperbolic polygon with k geodesic sides, with
the particularity that these k geodesic sides all have infinite length (such polygons are called ideal polygons, see
Section . Then we identify the sides of the polygons by pairs corresponding to the arcs of X.

Secondly, we see A as a map from L to ¥ and we construct g by modifying A homotopically on every connected
component Lg of L, as follows. Let v be the vertex of Ly and let e be the major edge of Ly. We start by replacing
homotopically the image of e by the geodesic closed curve c. in its free homotopy class, thus possibly changing
the image of v. Here we make use of the fact that A(e) is neither contractible nor homotopic to the neighborhood
of a puncture in ¥, since it is non-contractible in S. We require that during this homotopy A >~ u the image of v
remains in the same disk of ¥ (never belongs to an arc of ¥). We can do so since the reduced closed walk A(e)
makes no 0-turn and thus has the same sequence of crossings with the arcs of ¥ as the geodesic closed curve c..
Then, we replace for each minor edge e’ of Ly the image of ¢’ by the geodesic segment in its homotopy class, this
time holding the image of v fixed. The map p approximates A since the images of the vertices of L remained in
the same disks of ¥ and since for every edge € of L the walk A\(e’’) makes no 0-turn.

Finally, we may ensure without loss of generality that the vertices of L are mapped by p to distinct points
of ¥, and belong to no arc of ¥. That can be achieved by moving infinitesimally the image of each vertex of L
along the image of its major edge.

At this point p is not necessarily an embedding; indeed, several major edges can overlap. The strategy is to
prove that this is the only reason why p may fail to be an embedding, and that such overlaps can be eliminated
by a small perturbation of p.

4.4 Proof of Proposition In this section, we conclude the proof of Proposition [I.2] To ease the reading,
we abuse the notation and write L to refer to the map p on L (defined in the previous section).

Recall from Section that the universal cover S of S is homeomorphic to an open disk, which can be
compactified into a closed disk S U &S, so that the properties of Section can be applied. Note that, here, we
view SUAS as a purely topological space, and completely ignore any metric on it. In this section, we consider the
subset ¥ of S made of the points that are lifts of 3; in other words, ¥ is obtained from S by removing the lifts
of the punctures. (It turns out that Y is a covering space of ¥, but we will never use this property.) ¥ naturally
inherits a hyperbolic metric, obtained by lifting the hyperbolic metric of X.

By construction, lifts of edges of L are geodesics under the metric of ¥. A magor lift is a lift of a major
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Figure 11: (Left) Proof of Lemma (Right) Proof of Lemma

edge; it is a bi-infinite geodesic path in ¥ with two distinet limit points on dS, by Lemma and sparsity. A
minor lift is a lift of a minor edge; it is a geodesic path in 3.

If P and @ are minor lifts of distinct minor edges, then they may share one of their endpoints, but not both,
since L is sparse and since the vertices of L are distinct points of . In particular, the minor lifts of distinct minor
edges are distinct. However, the situation is slightly more complicated for major lifts. Two major lifts obtained
from different major edges are considered different. Recall that major edges are primitive (by Lemma and
sparsity). So any two major lifts ¢, d:R — ¥ of the same major edge that differ only by a homeomorphism of R
actually differ by an integer translation; in that case, we see them as equal.

The proof of Proposition [.2] combines a long series of relatively easy lemmas on the lifts of the edges of L
in 3. Recall that by assumption L can be untangled.

LEMMA 4.6. Every lift of an edge is simple. Any two lifts of edges (possibly the same edge) that do not overlap
intersect at most once, and if they intersect in their relative interiors, then they cross.

Proof. If two portions of geodesic paths intersect in their relative interiors without overlapping, then they cross.
Now assume, for a contradiction, that a lift is not simple; it contains a loop, which projects to a geodesic loop £
in ¥ that is contractible in S. The sequence of crossings of ¢ with the arcs of ¥ is that of a reduced walk. Thus,
by Proposition the loop £ does not cross any arc of ¥, and so £ is contractible in X, which is impossible since
{ is geodesic.

Similarly, if two lifts intersect twice without overlapping, they form two paths with the same endpoints and
otherwise disjoint, which project to geodesic paths p and ¢ in ¥ that are homotopic in S. The sequence of crossings
of p and ¢ with the arcs of ¥ must be the same by Proposition [3.3] so p and ¢ are homotopic in ¥, which is
impossible since p and ¢ are geodesics. ]

LEMMA 4.7. Any two major lifts either have the same image or are disjoint.

Proof. Assume that two major lifts P and @ intersect and do not have the same image. They cross exactly
once by Lemma But then, their limit points are pairwise distinct by Lemma and interleaved on 0S (see
Figure (11} (left)), which implies that L cannot be untangled by Lemma d

LEMMA 4.8. Let P be a major lift and QQ a minor lift such that P and Q are lifts of edges in the same connected
component of L, and such that an endpoint of @ belongs to the image of P. Then no other point of Q lies on the
image of P.

Proof. Otherwise, P and @Q overlap by Lemma[4.6] Let P’ be the part of P that starts and ends at the endpoints
of @ (which are both lifts of the vertex of the corresponding connected component Ly of L). By Lemma the
projection of P’ is the major edge of Ly. Moreover, the projection of @ is a minor edge of Ly. This contradicts
the sparsity of L. 0

Before treating the other cases, we need a definition. Let P be a minor lift and let v and v’ be the endpoints
of P (they are distinct). Let p be the minor edge of L that is the projection of P, and let ¢ be the major edge
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Figure 12: The two cases forbidden by Lemma [£.10]

of L that lies in the same connected component of L as p. Let Q and Q' be the major lifts, starting at v and v’
respectively, that are lifts of q. We say that @Q and Q' form the H-block of P. Indeed, Q, P, and Q' together
form the shape of the embedded letter “H”, because they touch only at v and v’ by the preceding lemmas, and
moreover the four limit points of Q and Q' are pairwise distinct by Lemma [4.4

LEMMA 4.9. There is no intersection between a major lift P and the relative interior of a minor lift Q.

Proof. Let R and R’ be the major lifts forming the H-block of @. Assume first that there is an intersection between
P and the relative interior of @ that is not a crossing. Then P and @ overlap by Lemma [£.6] In particular, P
intersects R and R’. However R and R’ are disjoint, being part of the same H-block. This contradicts Lemma [4.7]

Now assume that there is an intersection between P and the relative interior of @) that is a crossing. By
Lemmal[4.6] there is exactly one. By Lemmal4.7] and since P does not have the same image as R or R’, the major
lifts P, R, and R’ are disjoint. See Figure [11| (right). Also, P does not have the same pair of limit points as R
(or R’): for otherwise, by Lemma and Lemma P and R would project to closed curves freely homotopic
in S (up to reversal), and thus freely homotopic in ¥ by Proposition but then P and R would project to the
same geodesic closed curve, which is impossible since they are disjoint. Any homotopy of L induces a homotopy
of the lifts P, R, and R’, preserving the limit points on dS. Thus, even after a homotopy, one crossing between
P and Q, R, or R’ must remain (even if P shares one endpoint with R and/or one endpoint with R’). This
contradicts the assumption that L can be untangled. O

Let v be a vertex of L, and let e be a directed major edge of L based at v. We say that e is pulled to the
right if there exists a minor edge based at v that leaves v and/or arrives at v to the right of e; in other words,
in counterclockwise order around v, we do not see consecutively the target of e and the source of e. We say that
a directed major lift is pulled to the right if its projection is.

LEMMA 4.10. Let P and Q be two major lifts, projecting to different edges of L. Assume that they overlap;
assume (up to reversing one of them) that they have the same direction. Then (1) at most one of P and Q is
pulled to the right, and (2) none of them is pulled both to the left and to the right.

Proof. We first prove (1); see Figure left. Assume, for the sake of a contradiction, that both P and @ are
pulled to the right. Let P and Q be these lifts after a homotopy that untangles L. (Generally, we use bars to
denote lifts after this homotopy.) They must be disjoint (except at their limit points), so without loss of generality,
up to exchanging P and (), assume that P lies to the left of Q). Let R be the minor lift pulling P to the right;
thus, P is part of the H-block of R; let P’ be the lift that forms the H-block of R together with P. Then, Q
intersects either R, or P’ (twice), which is impossible.

We now prove (2); see Figure right. Assume that P is pulled both to the left and to the right. After
the homotopy, the lifts P and @ are disjoint, so without loss of generality, up to reversing the orientations of P
and @, assume that P lies to the left of Q. We are then in the same situation as the previous paragraph, and
conclude similarly. ]

LEMMA 4.11. The relative interiors of any two distinct minor lifts are disjoint.
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Figure 13: The four cases in the proof of Lemma

Proof. If the relative interiors of two distinct minor lifts P and @ intersect without crossing, they overlap. Since
P and @ are distinct they do not have the same pair of endpoints. Thus the relative interior of one of P and @
must intersect a major lift, a contradiction with Lemma [4.9]

If P and @ cross, they do so exactly once by Lemmald.6] Let R and R’ be the major lifts forming the H-block
of P, and similarly let 7" and 7" be the major lifts forming the H-block of Q. By Lemma4.7} and up to exchanging
notations, we distinguish between four cases, depicted in Figure

e If R, R', T, and T’ are pairwise disjoint, the cyclic ordering of the limit points on dS is necessarily
rirotiterirhtith, with obvious notations (R has limit points r; and rp, and so on), with possible
identifications of two consecutive limit points in this cyclic order if they come from different lifts. Any
homotopy of L induces a homotopy of the lifts P, Q, R, R', T, and T, preserving the limit points on dS.
Thus, even after a homotopy, one crossing must remain. This contradicts the assumption that L can be
untangled.

e If R is distinct from T but has the same image as T, these two lifts with the same image, when directed in
the same way, are both pulled to the right, or both pulled to the left, which is impossible (Lemma 1)).

e If R is equal to 7' and R’ is equal to 7", then any homotopy of L induces a homotopy of P,Q, R, R/,
preserving the four limit points on dS and the relative orders of the endpoints of P and @ on R and R'.
Thus, even after a homotopy, one crossing must remain.

e If R is equal to T and R’ is disjoint from T”, then, again, a crossing must remain after lifting a homotopy
of L. 0

Proof of Proposition[{.4 By Lemmas [£.6] [£.9] and the only reason why I may fail to be an embedding is
because two distinct major lifts intersect, which implies that they have the same image by Lemma [£.7] and thus
come from distinct major edges.

So now, consider an inclusionwise maximal set A of at least two overlapping, simple, major edges, directed
in the same way. By Lemma A contains at most one edge pulled to the left (and not to the right), at most
one edge pulled to the right (and not to the left), and possibly several edges which are pulled neither to the left
nor to the right. We can slightly perturb these edges to make them disjoint: from left to right, the edge pulled to
the left (if it exists), then, the edges not pulled at all, and finally, the edge pulled to the right (if it exists). After
this operation we have an embedding of L that approximates A. ]

5 Untangling on reducing triangulations: Proof of Theorem [1.3

In this section, we prove Theorem by providing an algorithm to untangle a graph on a reducing triangulation.
We already know how to do this for sparse loop graphs, so at a very high level, our strategy is to transform the
input graph G into a sparse loop graph; but this hides many technicalities, both at the conceptual and at the
computational level. We first compute a graph factorization, described in the next subsection. Then we need
some auxiliary lemmas, mostly relating the possibility of untangling a graph to that of the corresponding sparse
loop graph. Finally, we conclude the proof of Theorem with a weaker complexity than announced; this is
fixed in Section [6] which contains a better algorithm for computing a graph factorization.
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5.1 Graph factorization To transform an arbitrary graph G into a sparse loop graph, the natural idea is to
contract a spanning forest of G, to ignore the resulting contractible loops, and to identify the resulting homotopic
loops. In this section, we describe this operation formally and provide a first, rather naive, algorithm to compute
it. Unless noted otherwise, S is an arbitrary surface, with or without boundary.

A=
—_—
0
graph G \ / surface & ~
A »

SO

one-vertex graph L . )

— CO

Figure 14: A factorization (L, A,v) of the drawing (G, ) of Figure

We need to carefully distinguish an abstract graph from its drawings (or embeddings). Let G; be a connected
component of G and let § be the input drawing of G; on §; moreover, let Y be a spanning tree of G;. A
factorization of (G1,0) (with respect to Y) is obtained by the following process (see Figure [14)). First, change
the drawing § of Gy by contracting homotopically the spanning tree Y to a single point p. Let ¢’ be the new
drawing of G; on S. The non-tree edges of (G; are now drawn as loops under ¢’. Move these loops that are
contractible to the constant loop based at p. Now, whenever there are several loops of 1 in the same homotopy
class (with basepoint p), select one of these loops, ¢, arbitrarily, and redraw the other ones in the same way as .
Let 6" be the new drawing of G; on §. We remark that, under 6”, the graph G is first drawn onto a one-vertex
graph L, which is itself sparsely drawn in S. The factorization of (G, ) is given by the one-vertex graph L,
its sparse drawing A on S, and the drawing v of G; onto L. By construction, § and A o v are homotopic; see
Figure [T4] left.

Equivalently, but we will not need this equivalence, a factorization of (G1,d) (with respect to Y)) is given by:

e a one-vertex graph L, and a sparse drawing A of L on S,

e a drawing v of Gy onto L, mapping each edge of Y to the vertex of L, and each edge of G \' Y to either
the vertex of L or a loop of L,

such that the drawings 6 and A oy of G; on S are homotopic.

A factorization of a drawing § of a disconnected graph G is given by a factorization for each of the connected
components of G. The size of a factorization (L, A,~) of (G, ) is the sum of the sizes of A and ~.

A crucial tool is the following proposition.

PROPOSITION 5.1. Under the hypotheses of Theorem[1.3, we can, in O(gnlog(gn)) time, compute a factorization
of (G, ) of size O(gn), or correctly report that & cannot be untangled on S.

We first give a brute force algorithm to prove this proposition with a worse running time, namely O(n?), and
output size, namely O(n?), in order to illustrate the general strategy. While this can be improved using simple
arguments, to achieve the claimed running time of O(gnlog(gn)) requires several algorithmic ingredients. Most
notably, we need a new data structure, possibly of independent interest, to store the contracted loops of G in a
compressed form. We defer the full proof of Proposition [5.1] to Section [6]

Proof of Proposition[5.1], with a worse running time and output size. Without loss of generality, we may assume
that G is connected. We take an arbitrary vertex v of an arbitrary spanning tree Y of G. We then contract Y
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to v, thus obtaining a drawing ¢’ of G in which all edges of Y are mapped to v. The size of ¢’ is O(n?), because
every non-tree edge is now drawn as a walk of length O(n). We reduce all these walks in O(n?) total time using
Proposition and contract, in the drawing J, the edges of Y. Now, by Proposition this ensures that
contractible loops are shrunk to the basepoint and that homotopic loops overlap, which implies that the image
of G is that of a sparse drawing of a one-vertex graph.

We then compare pairwise these O(n) walks, each of length O(n), in O(n?) total time. From there, we can
immediately compute the loop graph L, whose image is the union of these walks, its drawing A, and the map ~.
The size of the output is O(n?). ]

5.2 Auxiliary lemmas We present three auxiliary lemmas needed for the proof of Theorem|[I.3] These lemmas
are valid for arbitrary (compact, orientable) surfaces, with arbitrary genus, with or without boundary, which will
be useful later.

The following lemma might not be new, but we could not find a reference, so we provide a proof. It may be
of independent interest. We will only use its corollary (Corollary . An isotopy between two embeddings of
a graph G is a continuous family of embeddings of G between them.

LEMMA 5.1. On a surface S with or without boundary, let each of L = (¢1,...,4;) and L' = (¢4,...,¢},) be a
set of simple, pairwise disjoint, pairwise non-homotopic, non-contractible loops with basepoint v. Assume that ¢;
and £ are homotopic (with basepoint fived) for each i. Then L and L' are isotopic (with basepoint fized).

Proof. Let S be obtained from S by removing a small disk D around v. We can assume that all loops are piecewise
linear with respect to a fixed triangulation of S |24 Appendix|, and thus that no crossing occurs in D, and that
each loop crosses the boundary of D exactly twice. We let ; and lZ be the arcs in S that are the pieces of ¢;
and ¢} obtained after removing D, and L and L' be the corresponding sets of arcs.

For each ¢, since ¢; and ¢, are homotopic on S, they are isotopic on S, by a result of Epstein [24] Theorem 4.1].
So /; and tZ are homotopic on S , where the homotopy allows to slide the endpoints on dS.

Because L and L’ are simple, whenever there is an embedded bigon or an embedded “half-bigon” |26,
Section 1.2.7] between L and L' , there is an innermost embedded bigon or innermost embedded half-bigon,
which we can remove using an isotopy of L (sliding endpoints on the boundary is allowed), decreasing the number
of crossings. So without loss of generality we can assume that there is no embedded bigon or half-bigon between
Land L.

In particular, ¢; and lz are in minimal position in their homotopy classes [26, Section 1.2.7], and since they
are homotopic (allowing sliding on the boundary), they are disjoint. The corresponding loops ¢; and ¢, bound
a disk on §. Moreover, because the loops in L are pairwise non-homotopic, and because there is no embedded
(half-)bigon between L and lZ, the disk does not meet L. We can thus, for each i, push ¢; to ¢, by an isotopy
of L. 0

COROLLARY 5.1. Let A and N be homotopic sparse embeddings of the same one-vertex graph L on a surface with
or without boundary. Then the rotation systems of A and X are the same.

Proof. Assume first that the surface has no boundary. Note that the basepoint b may move during the homotopy
between A and X, following a (possibly non-simple) path p. By an ambient isotopy of the surface (a continuous
family of self-homeomorphisms), starting from the embedding A, we push the basepoint b along path p, obtaining
an embedding N isotopic to A, and thus with the same rotation system as A, that is also homotopic to X' with
basepoint fized. We can then apply Lemma [5.1]to A’ and A", obtaining the result. 0

We now present our two main technical lemmas concerned with factorizations. Here, our notations distinguish
graphs from their drawings.

LEMMA 5.2. On a surface with or without boundary, consider a factorization (L, \,7) of (G,0). If (G,d) can be
untangled, then (L,\) can be untangled.

Proof. Let 0’ be an embedding of G homotopic to 4. Starting from §’, we contract the edges of G that are part
of the spanning trees used to define the factorization, obtaining a loop graph embedded on §. We then remove
contractible loops and keep only one loop whenever several loops are in the same homotopy class. In this way, we
obtain an embedding A’ of L in § that is homotopic to A. Thus, (L, A) can be untangled. 0
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X @»x«@

Figure 15: (Continuation of Figures [1f and Although the map X is homotopic to an embedding X\’ (left), the
map A o+ is not a weak embedding (right), which implies by Lemmathat ¢ is not homotopic to an embedding.

LEMMA 5.3. On a surface with or without boundary, consider a factorization (L, \,v) of (G,0). If § and X\ are
embeddings, then (G, )\ o7) is a weak embedding.

See Figure [15] for an illustration of this lemma.

Proof. We first remark that, without loss of generality, we can assume that G is connected; this is because v maps
the connected components of G to those of L bijectively.

Then, we prove that we can isotope (G,d) so that its new image in S lies in the neighborhood of some
sparsely embedded one-vertex graph. For this purpose, we almost-contract the spanning tree Y used to define the
factorization, keeping the fact that we have an embedding of G. The resulting loops fall into homotopy classes. The
loops in the trivial homotopy class can be isotoped close to the basepoint; indeed, in an embedded one-vertex graph,
any contractible simple loop bounds a disk with only (possibly) contractible loops inside it [24, Theorem 1.7]. The
loops in any other given homotopy class can be bundled together so that they are parallel; indeed, in an embedded
one-vertex graph, any pair of homotopic loops bounds a disk with only (possibly) contractible or homotopic loops
inside it. To summarize, we have an embedding ¢’ of G homotopic to § whose image lies in a neighborhood of the
image of some embedding X of a sparse loop graph L'.

Actually, there is a canonical isomorphism between L and L', because each edge of L and L’ corresponds to a
particular set of non-tree edges of G (forming a single homotopy class after contracting Y'); so we can identify L
and L’ via this isomorphism. Also, for use at the end of the proof, we remark that A and X" are (freely) homotopic.

By construction, the embedding ¢’ can be chosen to lie in any neighborhood of the map N\ o v (for the
compact-open topology of maps from G to S). Hence X o+ is a weak embedding. Alternatively, it would now be
easy to build the patch system of X' (L’) (see Section associated to X', so that § and this patch system indeed
witness that (G, X o) is a weak embedding.

Now, we recall that A and \’ are homotopic embeddings of L, so the rotation systems are the same in A and )’
by Corollary Also, as recalled in Section the fact that A\’ o~ is a weak embedding depends only on the
rotation system of (L, '), not on A’ itself. This implies that (G, A o) is a weak embedding as well. |

5.3 End of proof of Theorem We are now in a position to give the algorithm for Theorem In a
nutshell, we compute a factorization of G, untangle the corresponding loop graph L (or return that G cannot be
untangled), determine whether G is a weak embedding in (a tubular neighborhood of) L, and declare that G can
be untangled if and only if it is the case.

Proof of Theorem[I.3 Let T be a reducing triangulation of a surface S of genus g, let G be a graph, and let § be
a drawing of G on T

1. We apply Proposition (proved with the announced running time in the following section), that is: In
O(gnlog(gn)) time, we either determine that (G, d) cannot be untangled on S (and thus abort), or compute a
factorization of (G, 9) of size O(gn) given by the loop graph L, its sparse drawing A on S, and the drawing v of G
onto L, such that § and X o« are homotopic.

2. We decide whether (L, \) can be untangled on S, using Proposition .1} in O(gnlog(gn)) time. If it is not
the case, we abort, because G cannot be untangled, by Lemma Otherwise, (L, A) can be untangled, and as
indicated in Proposition we can compute the rotation system of (L, \') in some embedding A" of L homotopic
to A. By Corollary and since (L, \), and thus also (L, \), is sparse, we know that this rotation system is
actually the same for all untanglings of (L, \).

3. Using the result of Akitaya, Fulek, and Toth [3], restated in Theorem above, we determine whether
(G, N o7) is a weak embedding on S. We do this as follows. While we have not computed the embedding N’
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Figure 16: Homotopy classes of walks are represented by storing the elementary subwalks of their reduced walks
in a tree-like fashion.

into S, we have computed its rotation system in X', which is actually the information needed on A’ for the input
of the algorithm of Akitaya et al. Thus, the algorithm of Akitaya et al. determines whether (G, X' o ~) is a weak
embedding in O(gnlog(gn)) time, because the input has size O(gn).

4. If (G, N o) is a weak embedding, then the algorithm returns that (G, d) can be untangled; this is correct
because § and A oy are homotopic on S. Otherwise, the algorithm returns that (G, ) cannot be untangled; this
is correct by Lemma We have proved the correctness at every step, and by the preceding considerations, the
running time is O(gnlog(gn)). 0

6 Efficient graph factorization: Proof of Proposition [5.1

This section is devoted to the proof of Proposition [5.1] with the claimed running time. In particular, we fix a
reducing triangulation 7" of an orientable surface S of genus g > 2 without boundary. While a simple proof of
Proposition [5.1] with a weaker complexity was presented in Section[5.1] obtaining a near-linear complexity requires
more data structures.

6.1 Compressed homotopy trees Our main tool for the proof of Proposition [5.1]is a data structure, called
compressed homotopy tree extending the compressed homotopy sequence from Section [3.4] While the compressed
homotopy sequence is a linear list, the compressed homotopy tree is a tree-like structure. We will also extend the
proof techniques from that section.

Let 7 be an arbitrary vertex of our reducing triangulation 7. We need to support fast homotopy queries on
an evolving set of walks starting at r. Intuitively, there is a map x that associates a pointer to each walk starting
at 7, such that two walks W and W' are homotopic if and only if x(W) = x(W’). We call these k(W) keys.
Our data structure, a compressed homotopy tree, provides efficient access to such a map « in the following
sense: If W’ is the concatenation of W with a single edge, then we can compute x(W’) from (W) quickly (in
time logarithmic in the number of operations already performed).

For this purpose, we remark that the homotopy class of a walk W is determined by the unique reduced
walk p(WW) homotopic to W. We store the reduced walks p(WW) in compressed form, by enhancing the data
structure from Section in a tree-like fashion, instead of a linear list (in a way similar to shortest path trees);
for each walk W starting at r, we let k(W) be a pointer to the last elementary subwalk of W. Each node of the
tree corresponds to an elementary subwalk, and stores (see Figure :

e the first and last directed edges of T' of the elementary subwalk;

e the turn sequence of the elementary subwalk, in compressed form (as in Section the elementary subwalk
has a turn sequence of the form 3%, (—3)*, or another symbol a; we store its form together with the integer
k or the symbol a);
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e a pointer to its parent;

e the elementary subwalks of its children, stored in appropriate search trees (see below).
We maintain the following invariants:

e the children of any given node in the tree correspond to pairwise distinct turn sequences;

e the first edge of an elementary subwalk equals the last edge of its parent.

By these invariants, and because reduced paths are unique, two walks starting at r are homotopic if and only if
they have the same keys. Thus, once the keys of two walks have been computed, we can, in O(1) time, decide
whether they are homotopic.

We now list a few operations that can be handled by our data structure. Two of them are easy:

LEMMA 6.1. Compressed homotopy trees support the following operations:
e TRIVIALKEY: return the key corresponding to the empty walk at r, in O(1) time;

e REDUCEDWALK: given the key of a walk W, return the compressed turn sequence of the reduced walk
homotopic to W, in time linear in its length.

Proof. The TRIVIALKEY operation is indeed trivial.
The REDUCEDWALK operation can be done by traversing the tree from (W) up to the root, noting the
labels of the nodes in order in which they are encountered, and then reading them in reverse order. 0

More interestingly, we can also extend the set of walks considered:

LEMMA 6.2. Compressed homotopy trees support (with additional data structures described in the proof) the
operation EXTEND: Given the key of a walk W, finishing at vertex v, and given a directed edge e of T starting
at v, return the key of the concatenation of W and e, in O(logp) time, where p is the number of EXTEND
operations already performed.

Proof. Because we must maintain the invariant that the children of any given node in the tree correspond to
pairwise distinct turn sequences, we require one more ingredient to our data structure. Given an elementary
subwalk W, we need to be able to find the child of W that has a given turn sequence in O(logp) time, or certify
that such a child does not exist. For this purpose, recall that each elementary subwalk has the turn sequence 3*
or (—3)¥ for some k > 1, or a for some a & {—3,3}. We split the children of W according to each of these three
categories. In a given category, a child of W is encoded by the nonnegative integer k or a. We use three red-black
trees [29] (one for each category, indexed by either &k or a) to decide whether the child of W with a specified
compressed turn sequence exists, or to insert it if it does not exist. Each of these operations takes O(logp) time,
because each red-black tree contains O(p) elements.

The rest of the proof reuses tools and arguments from Section Let W be a reduced walk finishing at
vertex v; let e be a directed edge starting at v; let W.e be the concatenation of W and e; and let W’ be the
reduced walk homotopic to W.e. We claim that the compressed homotopy sequences of W and W’ each have at
most 49 elementary subwalks after their longest common prefix. To prove the claim it is enough to prove that
the compressed homotopy sequences of W.e and W' each have at most 48 symbols after their longest common
prefix; indeed the compressed homotopy sequences of W and W.e do not differ by more than one final elementary
subwalk. Now recall from Section [3.4] that, for any walk W”, o(W") equals three times the length of W” plus the
number of bad turns of W”, and that ¢ strictly decreases when performing a reduction move. In the same spirit
as the proof of Proposition observe that o(W.e) < (W) 4 4. Observe also that o(W) < o(W’) + 4, since
W can be obtained from the concatenation of W’ and the reversal of e by performing reduction moves, which
decrease the value of . So p(W.e) < p(W')+ 8. Since W’ is the unique walk obtained by reducing W.e, we have
that any sequence of reductions on W.e has length at most eight. Initially, only the last elementary subwalks
of W.e can yield a reduction. Each reduction replaces at most six consecutive elementary subwalks by at most
seven ones, and then backtracks by at most six elementary subwalks (see the proof of Proposition . Thus,
only the last 48 elementary subwalks of W.e can be changed using successive reductions, which implies that the
remaining first elementary subwalks of W.e are not affected when reducing to W’. This proves the claim.
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Let W and e be as in the statement of the lemma; we can assume that W is reduced. The claim implies that
we can compute k(W.e) from x(W) in O(logp) time, for example as follows. Starting at the elementary subwalk
representing W, in O(1) time we go up in the tree by 49 levels, reaching an elementary subwalk that represents a
walk TW/;. We can then compute, again in O(1) time, the compressed homotopy sequence of Wy, the walk obtained
from W by removing its prefix W; and by concatenating e to the result. We reduce this compressed homotopy
sequence in O(1) time (see again the proof of Section; finally, using the first paragraph of this proof, we extend
the elementary subwalk representing W with each elementary subwalk of this compressed homotopy sequence in
the tree in turn, in O(log p) time, reaching eventually the elementary walk for TW’'. d

Finally:

LEMMA 6.3. Compressed homotopy trees support (with additional data structures described in the proof) the
operation PARTITION: Given a set X of instances of some data structure containing, in particular, a key, we can,
in time linear in the size of X, compute the partition of X such that two elements in X belong to the same part
if and only if they contain the same key.

Proof. This operation relies on easy bookkeeping techniques; in detail: Slightly extend the data structure of
elementary subwalks with a pointer, initially NULL; for each element z of X in turn, if its key refers to an
elementary subwalk whose pointer is NULL, create a new part of the partition, initially containing only x, and
make the elementary subwalk refer to that part; otherwise, the key of x refers to an elementary subwalk W that
has already been visited, and = can be added to the part thanks to the pointer in W. After computing this
partition, restore all pointers to NULL. a

One final detail: The root of the tree of our data structure must be handled in a special way. By convention,
it is a virtual elementary subwalk whose only directed edge e does not belong to the triangulation T" but points
towards the root r, so that by convention the turns from e to each edge starting at r are oo, with the obvious
modifications on the algorithm to reduce walks. We omit the tedious and trivial details.

6.2 Algorithm We can now give the algorithm for Proposition [5.1] The intuition is, again, to contract the
edges of a spanning forest of G and to record the homotopy classes of the resulting loops. This computes the
sparse drawing A of the loop graph L. In a second step, we compute the drawing v of G onto L.

Proof of Proposition[5.1 By definition of a factorization, we can assume in the whole proof that G is connected.
Let r be an arbitrary root vertex of G and let Y be a spanning tree of G obtained by a depth-first search from r.
Let us orient each edge e of G\ 'Y so that its target ¢(e) is an ancestor of its source s(e). Let ¢, be the loop
that is the concatenation of the (unique) path in Y from r to s(e), edge e, and the (unique) path in Y from ¢(e)
to r. Given a vertex v on the path from t(e) to r, we let £ be the loop ¢, where the last segment from v to r is
truncated (thus, v always appears in £7).

In a first step, we compute the key of (the image in T of) the path in Y from r to each vertex of G. This
can be done in O(nlogn) time by traversing Y in top-down order and using the EXTEND operation O(n) times.

Similarly, in the same amount of time, we can compute, for each edge e of G\ 'Y, the key fe(f.tg(e)) of the image

of £ in the triangulation T.

In a second step, using the keys already computed, we compute the keys of the entire loops /., but to get
an efficient algorithm we eliminate duplicate keys as we encounter them, and halt whenever there are too many
distinct keys (i.e., too many homotopy classes, so that G cannot be untangled). We do this in a bottom-up way
in the tree Y. For each vertex v of G, let K(v) be the set of keys of the walks ¢¥, for each edge e of G \ Y such
that v appears after e in £..

Assume that we have computed the sets K (v") for each child v of a vertex v; using the PARTITION operation,
we can assume each K (v') to be without duplicates. If one of them has size larger than 12g, then the directed
loops £, fall into at least 12g + 1 distinct homotopy classes, which, by a folklore result (see, e.g., |8, Lemma 2.1]),
implies that G cannot be untangled, so we abort. Otherwise, for each child v’ of v in T and for each key k € K (v’),
we apply the EXTEND function to k and edge v'v. Let K(v’,v) be the resulting set of keys. We now observe that
K (v) is obtained by removing the duplicates in the union of the following sets of keys:

e the sets K(v',v), for each child v’ of v, and
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Figure 17: How to build a reducing triangulation from a canonical polygonal schema of S. The cases g = 2 (left)
and g = 3 (middle) use special constructions; the case g > 4 (right) trivially generalizes to higher genus. In all
cases, there is a walk of length O(1) between any two corners of the polygonal schema.

e the set of keys of the form x(¢£2), for each edge e such that t(e) = v.

At the end of the recursion, unless the algorithm aborted, we have computed K (r). At each vertex v, the number
of times we apply EXTEND is O(gdeg(v)), where deg(v) is the degree of v in Y. So in total, EXTEND has been
applied O(gn) times, and the entire algorithm takes O(gnlog(gn)) time.

When K(r) has been computed, we can also compute the compressed turn sequence of the reduced walks
of K(r) in time linear in their lengths, using the REDUCEDWALK operation. Actually, since K (r) corresponds to
O(g) walks of length O(n) in G, we may uncompress these turn sequences and return the explicit description of
the O(g) reduced walks in O(gn) time, thus asymptotically without overhead in the running time. We have thus
computed the sparse drawing A of the one-vertex graph L on S.

Finally, remember that we also need to compute the drawing v of G onto L. In other words, we need to
compute the mapping from each edge e € G\ 'Y to the loops of L (or to its basepoint), or, equivalently, the key
of £, in K(r). We now explain how to refine the second step above to achieve this. In this second step, every
key considered is of the form k& = x(¢Y); whenever we encounter such a key k, we also store together with it a
corresponding edge e such that x(¢Y) = k. Whenever we detect redundancies in the current set of keys (see the
end of Section , we actually compute the set of edges e1,...,e, € G\'Y, p > 1, whose keys share a common
value k, which in particular implies s (fe,) = ... = K(c,). In that case, we declare that the edge corresponding
to the common key k is e, declare that the leader of eq, ..., e, is e1, and then completely forget about the edges
€2,...,ep. There is no overhead in the running time of the algorithm. At the very end, once the keys in K(r)
have been computed (each of them coming with an associated edge in G \ Y), we need to recover, for each edge
e € G\'Y, the corresponding key x(¢.) € K,. For this purpose, we remark that the set of edges in G \'Y is
implicitly organized as a forest, in which the “leader” relation is actually a “parent” relation. Thus, our problem
boils down to this: Given a forest, we need to compute, for each node, the root of its corresponding tree. This
can easily be done in time linear in the size of the forest, and thus, in our case, in O(n) time. a

7 Proof of Theorem when g >2 and b =0

In this section we prove Theorem in the case where our input surface S has genus at least two and is without
boundary, using Theorem [I.3] To do so, we transform homotopically our input drawing ¢ into another one that
lies in the 1-skeleton of a reducing triangulation. This is done in the following lemma.

Given a graph H embedded on &, a monogon is face of H that is a disk bounded by a single edge of H
(which is thus a loop). A bigon is a face of H that is a disk bounded by two edges of H (which are thus parallel
edges).

LEMMA 7.1. Let H be a graph of size m cellularly embedded on a surface S of genus g > 2 without boundary.
Let G be a graph, and let § be a drawing of G on H. In O(m + g(g + |0|)) time, we can construct a reducing
triangulation T of S and a drawing 6" of G on T, where &' is homotopic to § and |§'| = O(gld|).
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Proof. We first claim that we can assume without loss of generality that H is a set of O(g) loops with a common
basepoint. Indeed, we can, in O(m) time, contract an arbitrary spanning tree of H and transform the input
drawing § of G homotopically into a drawing of G in that new graph. Then we can iteratively remove edges
forming monogons, and merge together edges forming bigons, all in O(m) time. Euler’s formula and double
counting of the edge-face incidences then implies that H has O(g) loops. This proves the claim.

A canonical system of loops L of S is a set of pairwise disjoint simple loops with a common basepoint b,
such that, when cutting S along L, we obtain a canonical polygonal schema, a 4g-gon whose boundary reads
aibraiby . ..agbg&gl_)g in this order, where a1,...,ag4,b1,...,b, denote the loops in L, and bar denotes reversal.
Using a result by Pocchiola, Lazarus, Vegter, and Verroust [36], we compute, in O(g?) time, a canonical system
of loops L of § in general position with respect to H such that each loop of L crosses each loop of H at most four
times. We actually store the combinatorial map representing the overlay of H and L. Then, we merge the vertex
of H with the basepoint b of L, so that we now have the overlay of L and H, with the same vertex b. Now, for
each edge e of the system of loops L, if k edges of H cross e, thus splitting it into k + 1 subedges, we contract
k of these subedges. The effect is that each edge of H is transformed into an ordered set of arcs in the polygonal
schema, each connecting two corners. (H is not embedded any more, but this is irrelevant; only its homotopy
class matters in our problem.)

It is not difficult to extend L into a reducing triangulation T of S containing L; see Figure We can now
push every arc of H into a walk of length O(1) in 7. Finally, this new drawing of H in T naturally yields a
drawing ¢’ of G in T', homotopic to d, which we can compute in O(g|d]) time, of size O(g|d]). O

Proof of Theorem in the case g > 2, b = 0. The result follows immediately from Lemmal[7.1]and Theorem [I.3]
0

8 Proof of Theorem for the remaining cases

In this section we solve our untangling problem for the (orientable) surfaces not handled in the previous section,
namely when S is the torus or has non-empty boundary.

Recall that the entire algorithm for surfaces of genus at least two works as follows. In Step (0), we transform
the input graph H into a reducing triangulation (Section . Then we apply the four steps in the proof of
Theorem (Section [5.3)): (1) We compute a factorization (L, A,7) of our graph drawing (G, §) (or immediately
return that (G, d) cannot be untangled); (2) we untangle (L, \), obtaining an embedding (L, \’) (or return that
(G, ) cannot be untangled); (3) we decide whether (G, \ o «) is a weak embedding; (4) we return the answer
accordingly.

We follow the same general strategy. The arguments are still valid because they rely on auxiliary lemmas
(Section valid for arbitrary surfaces. Three ingredients must be adjusted: In Step (0), we must transform
the input graph; in Step (1), we must compute a factorization; in Step (2), we must untangle a loop graph.

8.1 Untangling on the torus We now prove Theorem when the input surface S is the torus.

The proof relies on three lemmas, for Steps (0), (1), and (2), respectively. We remark that we cannot apply
the exact same strategy as in the case of genus at least two, because the torus neither admits a hyperbolic metric
(by the Gauss—Bonnet theorem) nor a reduced triangulation (by Euler’s formula). On the other hand, we can
replace it with a simpler structure because of the Abelian structure on the homotopy group of the torus, see
below. A canonical system of loops @ of the torus is a set of pairwise disjoint simple loops (g1, ¢2) with common
basepoint that cross at the basepoint. Similar to Lemma [7.1] we have the following lemma, the proof of which is
strictly easier than Lemma [7.1] and thus omitted.

LEMMA 8.1. Let H be a graph of size m cellularly embedded on a torus S. Let G be a graph, and let 6 be a
drawing of G on H. In O(m + |0]) time, we can construct a canonical system of loops Q of S and a drawing &'
of G on Q, where &' is homotopic to 6 and |§'| = O(|d]).

So henceforth we can assume that our input drawing is on ). Let ¢; and go be the two loops of ). The
homotopy group on the torus is isomorphic to Z?; this means that every closed walk in @ is homotopic to ¢}"* - ¢5?
(where “-” denotes concatenation) for a unique (uy,us) € Z?2, and we represent homotopy classes by such vectors.
Moreover, walk concatenation translates, in homotopy, to vector addition, and free homotopy classes can also be
represented by such vectors. We say that a walk in @Q is reduced if it is of the form ¢;* - ¢52, for some integers

uy and us. Every walk in () is homotopic to a unique reduced walk; we can reduce walks in linear time.
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LEMMA 8.2. We can, in time O(|d'|log|d’|), compute a factorization of (G,d"), or correctly report that 6" cannot
be untangled.

Proof. The algorithm is an easy variation on the one described in Section[6.2} The only change concerns the data
structure that stores homotopy classes of walks in @), described in Section for reducing triangulations. Here
we replace the reduced walks in a reducing triangulation by reduced walks in ). The compressed homotopy tree
structure is replaced by a two-level tree-like structure, the first level for the integer u; and the second level for
the integer uy in the notations above. The four operations introduced in Section [6.1] extend to this context, with
the same complexity. Section [6.2] extends immediately, because it only uses these four operations. 0

LEMMA 8.3. Let Q be a canonical polygonal schema of the torus. Let L be a loop graph and X be a sparse drawing
of L in Q. We can decide whether X can be untangled in O(|)|) time. If so, we can compute the cyclic ordering
of the loops around each vertex of an embedding N of L homotopic to \.

Proof. We claim that we can assume, without loss of generality, that L is connected and contains at most three
loops. Indeed, if (L, \) can be untangled, each connected component of L has at most three loops (by Euler’s
formula) and if it has at least two loops, then by sparsity every embedding of that connected component cuts
the torus into a disk. Thus, either the conclusion of our claim holds, or L has several connected components,
each made of a single loop. These loops must be pairwise freely homotopic, because otherwise they cannot be
untangled; but then (L, A) can be untangled if and only if its restriction to a single connected component of L
can be untangled (and in that case the rotation systems are trivial). All these tests take linear time. This proves
the claim.

Recall (see, e.g., Farb and Margalit |26 Section 1.2.3]) that the homotopy class (u1,us) contains a simple
closed curve if and only if ged(|uq], |uz|) = 1, and that the homotopy classes (u1,uz2) and (v, v2) have geometric
intersection number |uqve — ugv1| (the minimum number of intersections of curves in their free homotopy classes).
We discuss according to the number of loops in L.

If L is made of a single loop in homotopy class (u1,us2), then (L,\) can be untangled if and only if
ged(fua, fug]) = 1.

If L is made of two loops, in homotopy classes (u1,us) and (v, vs), then, assuming (L, A) can be untangled,
the loops must be interleaved around the basepoint, and the corresponding closed curves must cross exactly once.
Thus, (L, A) can be untangled if and only if |ujve — ugvy| = 1.

If L is made of three loops, we first apply the previous test for the first two loops, in homotopy classes (u1, ug)
and (vy,vq). If it fails, then (L, \) cannot be untangled. Otherwise, in an embedding X', these two loops together
cut the torus into a square, and the third loop must be a diagonal of that square, so it must have signature
+(u1,u2) & (v1,v2), and the converse is obvious.

If the test passes, we need to recover the rotation system of L in some embedding homotopic to A. We can
actually build an explicit embedding of L homotopic to A, as follows. Recall that the universal cover of the torus
can be viewed by tiling infinitely many copies of the polygonal schema of (¢1,¢2) in a grid, identified to a square
unit grid Z2. We replace each loop of (L, \) in homotopy class (u1,uz2) by a loop that lifts, in the universal cover,
from point (0,0) to point (u1,uz2). The above conditions are exactly an algebraic characterization for these loops
to be simple and pairwise disjoint, except at their common basepoint. From this representation, we immediately
obtain the rotation system in that embedding, by looking at the cyclic order around the origin. ]

The proof of Theorem [I.1] in the case of the torus is now straightforward.

Proof of Theorem[I.]] for the torus. We first apply Lemma [8.1] Then we apply the algorithm described in
the proof of Theorem in Section [5.3] with the only modifications that we apply Lemma [8:2] instead of
Proposition [5.1] and Lemma [8:3] instead of Proposition [} O

8.2 Untangling on surfaces with non-empty boundary In this section, we prove Theorem in the case
where our input surface S has non-empty boundary. An obvious strategy is to attach a handle to each boundary
component and to apply Theorem to the resulting surface without boundary. While this is certainly a valid
approach, we show here that we can circumvent a large part of the technical machinery, even though this does
not improve the asymptotic running time.

A loop system of S is a set @) of pairwise disjoint simple loops with a common basepoint on S such that
each face of @) has genus zero and contains a single component of the boundary of S.
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LEMMA 8.4. Let H be a graph of size m cellularly embedded on a surface S of genus g > 0 with b > 1 boundary
components. Let G be a graph, and let 6 be a drawing of G on H. In O(m + |0]) time, we can construct a loop
system @ of S and a drawing &' of G on Q, where §' is homotopic to 6 and |8'| = O((g + b)|d)).

Proof. We represent S as follows. First, we close each boundary component of S with a disk, obtaining a surface
without boundary S. The graph H is embedded on S. The faces of that graph on S that correspond to boundary
components of S are marked as punctured. We keep the invariant that, at every step, every face contains at most
one puncture.

We first contract the edges of a spanning tree of H, and in passing we remove these edges from the drawing .
This preserves the homotopy class of §. Now H has only one vertex and the edges of H are loops. We fix a set L
of loops of H whose complement is an open disk in S. For example, we let L to be the complement of a spanning
tree of the dual of H.

We construct @ from H by iteratively removing a loop ¢ of H \ L whenever £ is incident to a face marked
punctured and a face not marked punctured. These two faces merge into a single face marked punctured. In the
end every face of ) is marked punctured so @ is indeed a loop system of S. Removing these edges all at once can
be done in linear time by taking a spanning forest of the dual of H \ L) rooted at the punctured faces.

There remains to reroute the edges of § as needed. Every edge of H not in @) belongs to a unique face of @,
and can be rerouted homotopically to a subpath of that face, on the side of that face that does not contain the
puncture. By Euler’s formula @ contains O(g + b) loops, so the faces have size O(g + b) in total. Thus, the size
of the drawing increases by a factor O(g + b). O

We remark that S is homeomorphic to the patch system X of @), and the arcs of 3 correspond to the
dual of ). Since S is a surface with non-empty boundary, the homotopy group of S is a free group; see, e.g.,
Stillwell [44, Chapter 2]. This implies two facts that we shall use later: (1) The homotopy classes of paths or loops
in S correspond to sequences of crossings with the arcs of X that are reduced (do not contain two consecutive
crossings with the same arc in opposite directions); (2) the free homotopy classes of closed curves on S correspond
to cyclically reduced sequences of crossings.

(Such properties are folklore, and follow from their analogs for the homotopy of paths and closed walks in
graphs. It is clear that two paths with the same reduced sequence of crossings are homotopic; conversely, any two
homotopic paths lift to paths with the same endpoints in the universal cover, and their sequences of crossings,
once reduced by homotopies, must be the same because ¥ lifts to pairwise disjoint simple arcs, each of which
separates the universal cover into two pieces. A similar argument holds for closed walks, where the homotopy
between them must be lifted.)

LEMMA 8.5. Let Q be a loop system of size m in a surface S with non-empty boundary. Let G be a graph and &
be a drawing of G in Q. In O(m|d|log(mld|)) time, we can compute a factorization of (G, ) of size O(m/|d|) or
correctly report that § cannot be untangled.

Proof. The algorithm is the one described in Section [6.2] for the proof of Proposition 5.1} In the same way as for
the torus the only change concerns the data structure that stores homotopy classes of walks. Here we replace the
reduced walks in a reducing triangulation by reduced walks in Q. That is, we store these walks as lists of directed
edges of @ in a tree-like fashion to implement the data-structure of Section The four operations introduced
in Section [6.1] extend to this context, with the same complexity. Section extends immediately, because it only
uses these four operations. 0

From the above factorization, we obtain a drawing A of a loop graph L on ¥. As in Section [ we choose an
arbitrary edge of each connected component of L and declare it to be a major edge; the other edges are minor
edges. We say that A is straightened if, under A, (1) the sequence of crossings of each major edge with the
arcs of ¥ is cyclically reduced, and (2) the sequence of crossings of each minor edge with the arcs of ¥ is reduced
(possibly not cyclically). The analog of Proposition becomes:

LEMMA 8.6. Let L be a loop graph and let X : L — % be a drawing. Assume that X\ is sparse and straightened. If
there is an embedding homotopic to A, then X\ is a weak embedding.

Proof. Since X is straightened, A(e) is cyclically reduced for every major edge e of L, and A(e’) is reduced for
every minor edge ¢’ of L. There is by assumption an embedding X' : L — X freely homotopic to A.
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In a first step, we modify the embedding A by an ambient isotopy that fixes the boundary of ¥ so that the
major edges of L are cyclically reduced (with respect to the arcs of X). For this purpose, we remark that the
major edges are, in )\, pairwise disjoint simple closed curves. Whenever there is a bigon between the image of a
major edge and an arc of X, there exists an innermost bigon, which we can remove by an ambient isotopy; the
number of crossings with the arcs decreases. We repeat this operation until there is no more bigon, at which point
the major edges are all cyclically reduced in .

Now consider a connected component Ly of L. We can make the major edge e of L cross the arcs of ¥ with
the same sequences in A’ and in A (not up to cyclic permutation, ezactly the same sequence) simply by sliding
the image of the basepoint v of Ly along the image of e in . We slide v by an ambient isotopy in the tubular
neighborhood of e. We can do so since the sequence of crossings of X (e) is a cyclic permutation of the one of
A(e); here we make use of the fact (see above) that if two freely homotopic closed curves are cyclically reduced,
then their sequences of crossings with the arcs of ¥ are equal up to cyclic permutation. In A\’ we slide the image
of v along the image of e so that the two sequences become equal; ) is still an embedding. We do this for every
connected component Lg of L in turn.

Consider again some connected component Lg of L, with vertex v. We claim that we can modify A’ by sliding
the image of v some finite number of times around the image of the major edge e of Ly (each time, the image of
v making one full loop around the image of e) so that, in the end, there is a free homotopy between A'(Lg) and
A(Lp) in which the image of v does not leave its face of the patch system Y. To prove this claim first observe
that it would be possible to do so, not by sliding along e, but by some free homotopy of A'(Lg). During this
homotopy the image of v makes a loop ¢ in ¥.. The loop ¢ commutes, up to homotopy, with the loop X (e) as
N(e) =~ A(e) by the previous paragraph and A(e) =~ £\'(e)¢/~! by construction, where ~ denotes homotopy of loops
relatively to their basepoint. Moreover, the loop A’(e) is non-contractible since A’ is sparse, so it is also primitive
by Lemma Thus ¢ is a power (up to homotopy) of X (e). Let us prove this. The fundamental group of ¥ is
a free group. It is known (and we prove) that in a free group if two elements  and y commute, then they are
powers of some common element: indeed, the subgroup K generated by x and y is an Abelian subgroup, which
is free by the Nielsen—Schreier theorem; but the only Abelian free group is Z; so K is cyclic. Now, as mentioned
above, \'(e) is primitive.

Now in X any bigon between a minor edge of Ly and an arc of 3 does not contain any vertex of L. Indeed,
otherwise, the major edge incident to that vertex would not be cyclically reduced, a contradiction. So we can
remove any innermost bigon by an ambient isotopy. When this is not possible anymore, by the preceding claim,
the minor edges intersect the arcs of ¥ with the same sequence in A and \'. Here we make use of the fact (see
above) that if two loops are homotopic relatively to their basepoint (or via a free homotopy in which the basepoint
does not leave its face of ¥) and reduced, then they intersect the arcs of 3 with the same sequence. 0

Proof of Theorem[I_]] in the case b > 1. We apply Lemma to construct in time O(m + n) a loop system @
and a drawing ¢’ : G — Q of size O((g + b)n) homotopic to §. We apply Lemma to compute in time
O((g+b)?nlog((g+b)n)) a factorization (L, A, ) of (G,d") of size O((g+b)?n), or we correctly conclude that §’ (and
thus ¢) cannot be untangled. We straighten A, by first cyclically reducing the major edges and then reducing the
minor edges, similar to Lemma Then we apply Lemma and Theorem in time O((g+b)?nlog((g+b)n))
to determine if there is an embedding A : L — S homotopic to A. If not, we conclude by Lemma that ¢’
(and thus §) cannot be untangled. Otherwise, we retain the rotation system of such an embedding )\, and we
apply Theorem to determine if X' o~ is a weak embedding. The result tells us whether § can be untangled by
Lemma 5.3 O

9 Untangling piecewise linear drawings in the punctured plane

In this section we consider the model for the input where the surface is the punctured plane and the drawing
is a piecewise linear map. More precisely we prove Theorem (The size of a piecewise linear drawing ¢ of a
graph G is the size of G plus the total number of segments comprising the edges of the images of G under §.)

Proof of Theorem[I.4 We reduce to the combinatorial map model in a way very similar to Cabello, Liu, Mantler,
and Snoeyink [6, Lemma 11], in the same spirit as Colin de Verdiére and de Mesmay |15, Section 5.2]. More
precisely we do the following. Firstly, we fix a closed box around each point of P that does not intersect the image
of § nor the other points of P. Denoting by P the resulting collection of boxes we also fix a bounding box B
that contains the image of § and the boxes in P in its interior. Secondly, we construct, in time O(p'*¢) for some

Copyright (© 2024

4936 Copyright for this paper is retained by the authors



Downloaded 10/28/24 to 90.79.8.25 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

arbitrary €, 0 < € < 1/2, a piecewise linear cellular decomposition H of B\ P of size O(p) such that every line in
the plane crosses at most O(,/p) segments of H |6, Lemma 11]. Without loss of generality, we assume that H is
in general position with respect to our drawing d. Thirdly, for every segment s of the image of § we compute the
sequence of the O(,/p) segments of H that are crossed by s, in the order in which they are crossed. Fourthly, we
consider the dual graph H* of H and compute a drawing ¢’ homotopic to § that lies in H*; it has size O(n,/p).
Finally we apply Theorem to ¢’ and H* to determine if there exists an embedding homotopic to ¢’ in B\ P.

|
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A Limit points in the universal cover

In this section, we present the (classical) details omitted from Section A good overview is provided by Farb
and Margalit [26, Chapter 1], but we need a few more properties, so we provide proofs.

A.1 Compactification of the hyperbolic plane and fixed points of translations Let H be the hyperbolic
plane, corresponding to the open unit disk in the Poincaré model. One can compactify H by considering the
set OH of “points at infinity”, corresponding to the unit circle (in the Poincaré model) with its usual topology.
Equivalently |26 Chapter 1|, the points in OH are the equivalence classes of unit speed geodesic rays, where two
rays are equivalent if they stay at bounded distance from each other; the union H of H and 0H is topologized via
the basis containing the open sets of H plus one open set Up for each open half-plane P of H, where Up NH = P
and Up N JH contains the equivalence class ¢ of unit speed geodesic rays if all the rays in ¢ eventually end up in
P.

Isometries of H extend naturally to H, and the hyperbolic translations are those with exactly two fixed
points on OH. In particular the identity is not considered a hyperbolic translation here. Any hyperbolic
translation f admits a unique geodesic line A, its axis, such that f(A) = A and such that f is a real translation
on A. A hyperbolic translation is uniquely determined by its axis and by the image of a point on this axis.
Iterating any point of H under f makes it converge to one of the two fixed points of f in OH, the fized point
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at +oo of f, while iterating under f~! makes it converge to the fized point at —oo of f. See |32, p. 13-14] for
more details.

The following lemma is standard and results from simple computations in the Poincaré model of the hyperbolic
plane, so we omit the proof.

LEMMA A.1. In the hyperbolic plane H let L C H be a geodesic line and a : R — H be a unit speed geodesic ray.
The distance between a(t) and L either tends to +00 as t — +oo or it tends to zero. In the latter case, there is a
unit speed parametrization ¢ : R — L such that c(t) and a(t) remain at bounded distance over t > 0.

We will need the following lemma in the next section.

LEMMA A.2. Fizx any x € H. Two hyperbolic translations f,g : H — H have the same fized point at +oo if and
only if they satisfy the following for some D > 0: there exist arbitrarily large values of i,j > 0 for which f'(z)
and ¢’ (z) are at distance less than D.

Proof. Let £ € OH and ¢’ € OH be the fixed point at +oo of respectively f and g.

First assume the existence of some D > 0 such that there exist arbitrarily large values of 7,7 > 0 for which
fi(z) and g7 (z) are at distance less than D. To prove £ = ¢’ we consider any open set O of H that contains ¢ and
we claim the existence of ig > 0 such that for every i > ig the ball of radius D centered at fi(x) is contained in
O. This claim, combined with our assumption, implies that there exist arbitrarily large values of j > 0 for which
g’ (z) € O. Since g’ (x) tends to ¢' as x goes to +0o, we have £ = /'

To prove this claim, and without loss of generality, we assume that O belongs to the basis described above
to define the topology of H. Then, and since £ € O, there is an open half plane P of H such that O = Up.
Parameterize the axis of f by some unit speed geodesic a : R — H. By definition (up to reversing a) there is
a > 0 such that foa(t) =a(t+ a) on every t € R. Since f is an isometry the distance between f!(z) and a(ia)
remains constant over ¢ € Z. By construction a eventually ends up in P. Let L be the geodesic line that bounds
P in H. If the distance between a(t) and L goes to infinity as ¢ € R goes to 400, then the claim is proved.
Otherwise this distance goes to zero by Lemma and there is some unit speed parameterization ¢ : R — H
of L such that ¢(t) and a(t) remain at bounded distance over ¢ > 0. Thus ¢(t) tends to £ as t € R goes to +oo,
contradicting the fact that c(t) ¢ P for every t € R.

Conversely, assume £ = ¢'. Consider unit speed parametrizations a : R — H and b : R — H of their respective
axes such that a(t) and b(t) tend to £ as t goes to +o0o. By definition of the limit points, there exists D > 0 such
that for every ¢ > 0 the distance between a(t) and b(t) is less than D. Let o« > 0 and 5 > 0 be the translation
lengths of respectively f and g on their axes. There exists D’ > 0 for which there exist ¢, > 0 arbitrarily large
such that |ai — B8j| < D’ and thus such that a(ai) and b(5j) are at distance less than D + D’. Moreover the
distance between a(ai) = f%(a(0)) and f*(z) does not depend on i since f is an isometry. The same holds for the
distance between b(35) and g’ (). 0

A.2 Limit points of lifts of closed curves Every orientable surface S of genus at least two without boundary
is homeomorphic to the quotient of the hyperbolic plane H by the action of some (actually, many) group I' of
isometries of H. The elements of I' other than the identity are hyperbolic translations |26, p. 22]. The action
is free, in the sense that if f € I" satisfies f(xz) = = on some xz € H, then f is the identity. The action is also
properly discontinuous in the sense that every x € H admits a neighborhood whose intersection with the I'-orbit
of z is {z}. The surface S then admits a unique hyperbolic metric for which the quotient map H — S is a local
isometry. Also, the hyperbolic plane H is a universal covering space of S, where the quotient map H — S is the
covering map.

In this appendix, when we write a surface S as a quotient H/T', we refer to the construction presented in the
previous paragraph. We shall prove the four lemmas of Section First we need two preliminary lemmas.

LEMMA A.3. Let S =H/I'. Consider a lift ¢ : R — H of a non-contractible closed curve on'S. There is f € T\ {1}
such that ¢(t + 1) = f(&(t)) on every t € R. Moreover lim o ¢ and lim_, ¢ exist and are the fized points of f in
OH, at respectively +o0o0 and —oo.

Proof. For every t € R, there exists some f; € I' such that f;(¢(t)) = é(¢t + 1). Moreover every such f; is not the
identity as é(t) # ¢é(t + 1) since ¢ is a lift of a non-contractible closed curve. We claim that f; does not depend
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on t. This claim concludes the proof. We prove the claim by contradiction so assume the existence of some ¢t € R
fixed and of some ¢’ € R arbitrarily close to ¢ such that f; # fi. By choosing ' close enough to ¢ we make the
distance between ft71 o fi(&(t)) and é(t) go to zero, contradicting the fact that I acts properly discontinuously on
H. O

LEMMA A.4. Let S = H/T'. Assume that f,g € '\ {1} have the same fized point at +00. There are h € T'\ {1}
and n,m > 1 such that f = h™ and g = h™. In particular, they have the same fized point at —

Proof. Consider some arbitrary fixed x € H. We claim the existence of a,b > 1 such that f%(z) = ¢g°(z). Indeed
by Lemma there is D > 0 that satisfies the following. There are i,j > 0 arbitrarily large such that f%(x) and
g’ (z) are at distance less than D. For every such 4, j the point f~% o ¢g7(x) belongs to the closed ball B, of radius
D centered at . Since I' acts properly discontinuously on H the I'-orbit I" - x of x intersects B, in finitely many
points. Indeed every such point y € B, N T - x admits a neighborhood whose intersection with T - x is {y}, and
finitely many such neighborhoods suffice to cover the compact ball B,. In particular there exist 7,5 > 0, 7' > i
and j' > j such that f~% o g/’ (z) = f~" 0 g/ (x). Letting a := i’ —i > 1 and b:= j' — j > 1 proves the claim.

Our claim implies that f and g have the same fixed points both at +00 and —oco and thus the same axis, say
A, oriented from —oo to +o00. Without loss of generality we assume that = was chosen so that x € A. Recall that
f and g are real translations on A and let o > 0 and 8 > 0 be their respective periods.

We consider the hyperbolic translation h whose oriented axis is A and whose period ~ is defined as follows.
We proved aa = b since f(x) = ¢°(x) and since f%(x) and g°(z) are the translations of x along A by a distance
of respectively aa and b3. There are n,m > 1 relatively prime such that na = mb. By Bézout’s theorem, there
are u,v € Z such that un +vm = 1. We let v = ua + vg.

We claim that h = f“ o g¢", and thus h € . To prove this claim observe that the point h(x) is the translation
of the point x by a distance 7 along the oriented axis A of h. The point ¢”(x) is the translation of z by a distance
v8 along the same oriented axis A, and the point f“(g”(x)) is the translation of ¢g”(x) by a distance of u« along
A. Thus h(z) = f“og"(x). That proves the claim since hyperbolic translations are defined by their axis, here A,
and by the image of any point on this axis, here x.

In the same way we have h"™* = f and h" = g since these hyperbolic translations have the same oriented axis
by construction, and since their periods satisfy ny = o and m~y = 3, as seen by a straightforward computation.
|

We can now provide the omitted proofs of the lemmas in Section restated for convenience. From now on
we fix a surface S = H/T'. The universal cover S of S is thus identified with H.

LEMMA 4.2. If¢: R — S is a lift of a non-contractible closed curve on S, then lim o ¢ and lim_ ¢ exist (in
SUIS) and are distinct points of 9S.

Proof of Lemma[{.3 The result is given by Lemma [A-3] O

LEMMA 4.3. Lift a homotopy ¢ =~ d between non-contractible closed curves on S to a homotopy ~ d between
lifts of ¢ and d. Then ¢ and d have the same limit points.

Proof of Lemma[.3 Consider the hyperbolic translations, say f and g, given by Lemma [A.3] for ¢ and d
respectively. Since the homotopy ¢ ~ d lifts the homotopy ¢ ~ d, the distance between the points c(k:) F(&(0))
and d(k) = g*(d(0)) does not depend on k € Z. By Lemma [A.2] f and g have the same fixed points. |

LEMMA 4.4. Consider lifts ¢ and d of non-contractible closed curves on S. Assume either that ¢ and d intersect
exactly once, or that they are disjoint lifts of the same curve on S. Then the four limit points of ¢ and d are
pairwise distinct.

Proof of Lemma[{-4 By Lemma the two limit points of & are distinct, and similarly for d. Assume, for a
contradiction, that ¢ and d have the same limit point at 400 (up to reversing ¢ or d). There are two cases.

First assume that ¢ and d intersect exactly once in some point x € H. Without loss of generality assume
¢(0) = J(O) = z. Consider the hyperbolic translations, say f and g, given by Lemma for ¢ and d respectively.
Then f and g have the same fixed point at +00. Thus by Lemmathere exist 4,7 > 1 such that f* = g/. Then
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&(i) = fi(z) = ¢/(z) = d(j) and this point is distinct from z since, for example, ¢ is non-contractible. This is a
contradiction.

Now assume that é and d are disjoint lifts of the same curve ¢ in §. There is a geodesic closed curve «
homotopic to ¢ |26, Proposition 1.3]. Lift the homotopy ¢ ~ « to homotopies ¢ ~ & and d ~ B for some lifts &
and B of a. By the preceding lemmas, & and B have the same limit points. Thus & and /3 have the same image
(a geodesic line), so they are equal up to homeomorphism R — R. By the uniqueness part of the lifting property,
¢ and d are then equal up to homeomorphism R — R. We proved that ¢ and d intersect, a contradiction. 0

LEMMA 4.5. Let ¢ and d be two non-contractible closed curves on S. If ¢ and d admit lifts with the same pairs
of limit points, there is a closed curve e such that ¢ and d are homotopic to powers of e.

Proof of Lemmal[{.5 Let ¢ and d be lifts of respectively ¢ and d and assume that ¢ and d have the same limit
points. In a first step, if ¢ and d are disjoint, we apply a homotopy of ¢ to make ¢ intersect d; this does not change
the limit points of ¢ by Lemma

So we can assume without loss of generality that ¢ and d intersect, and thus also that &(0) = d(0) = = € H.
Consider the hyperbolic translations, say f and g, given by Lemma for ¢ and d respectively. By Lemma
there exist n,m > 1 and h € I' \ {1} such that f = h™ and g = h™. Thus f(z) = h"(z) and g(z) = h™(z). Let £
be a loop on S that lifts to a path from = to h(z). Based at zero, ¢ and d are homotopic as loops to respectively
the nth power and the mth power of the loop . 0
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